http://iet.metastore.ingenta.com
1887

Robust H∞ control for stability assessment in grid-connected offshore wind and marine current hybrid system

Robust H∞ control for stability assessment in grid-connected offshore wind and marine current hybrid system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The geographic suitability brings the offshore wind farm (OWF) and marine current farm (MCF) together with their aggregated power fed to grid simultaneously in most relevant energy harnessing infrastructures. However, stability assessment of the integrated system is a major concern due to the integration of stochastic and intermittent sources with parametric uncertainty. Bridge-type fault current limiter (BFCL) has consolidated their application for a suitable enhancement of stability margin for most modern supply systems. In this article, a detailed modelling of the integrated system is carried out in the presence of BFCL along with consideration of uncertainty as well. A robust H∞ controller design strategy for stability assessment of grid-connected OWF and MCF in the presence of parametric uncertainties is presented in this article. Linear matrix inequality (LMI) conditions are derived in the context of evaluating the robust controller gain with respect to desired robust stability margin. The efficacy of the controller design is compared with that of H∞ loop shaping and conventional P-I control through different case studies with simulation followed by real-time digital simulator (RTDS) validation.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5304
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5304
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address