http://iet.metastore.ingenta.com
1887

Microgrid operation improvement by adaptive virtual impedance

Microgrid operation improvement by adaptive virtual impedance

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Microgrids (MGs) are regarded as the best solution for optimal integration of the renewable energy sources into power systems. However, novel control strategies should be developed because of the distinct inherent feature of MG components in comparison to conventional power systems. Although the droop-based control method is adopted in the MG to share power among distributed generation units, its dependency to grid parameters makes its implementation not as convenient as that in conventional power systems. Virtual impedance has been proposed as the complementary part of droop control in MGs. In this study, adaptive virtual impedance is designed considering its effects on the system performance in the MG including: (i) decoupling active and reactive power control by making the grid X/R ratio high, (ii) maximum transferable power through the feeder, (iii) stability concern and (iv) precise reactive power sharing in different operating modes as well as smooth transition from connected mode to islanded mode (IM). To this end, a novel method is proposed to determine the reactive power reference of distributed generation (DG) units according to their contribution in reactive power sharing in IM. In addition, simulation in MATLAB/Simulink environment is conducted to assess the performance of the control system.

References

    1. 1)
      • 1. Moradi, M.H., Eskandari, M., Hosseinian, S.M.: ‘Operational strategy optimization in an optimal sized smart microgrid’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 10871095.
    2. 2)
      • 2. Moradi, M.H., Eskandari, M., Hosseinian, S.M.: ‘Cooperative control strategy of energy storage systems and micro sources for stabilizing microgrids in different operation modes’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 390400.
    3. 3)
      • 3. Moradi, M.H., Eskandari, M., Showkati, H.: ‘A hybrid method for simultaneous optimization of DG capacity and operational strategy in microgrids utilizing renewable energy resources’, Int. J. Electr. Power Energy Syst., 2014, 56, pp. 241258.
    4. 4)
      • 4. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in AC microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    5. 5)
      • 5. Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., et al: ‘Trends in microgrid control’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19051919.
    6. 6)
      • 6. Divshali, P.H., Alimardani, A., Hosseinian, S.H., et al: ‘Decentralized cooperative control strategy of microsources for stabilizing autonomous VSC-based microgrids’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 19491959.
    7. 7)
      • 7. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    8. 8)
      • 8. Guerrero, J.M., Chandorkar, M., Lee, T.-L., et al: ‘Advanced control architectures for intelligent microgrids—part I: decentralized and hierarchical control’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12541262.
    9. 9)
      • 9. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B.: ‘Performance improvement of multi-DER microgrid for small-and large-signal disturbances and nonlinear loads: novel complementary control loop and fuzzy controller in a hierarchical droop-based control scheme’, IEEE Syst. J., 2016, 12, (1), pp. 444451.
    10. 10)
      • 10. Planas, E., Gil-de-Muro, A., Andreu, J., et al: ‘Design and implementation of a droop control in d–q frame for islanded microgrids’, IET Renew. Power Gener., 2013, 7, (5), pp. 458474.
    11. 11)
      • 11. Majumder, R., Ghosh, A., Ledwich, G., et al: ‘Load sharing and power quality enhanced operation of a distributed microgrid’, IET Renew. Power Gener., 2009, 3, (2), pp. 109119.
    12. 12)
      • 12. de Souza, W.F., Severo-Mendes, M.A., Lopes, L.A.: ‘Power sharing control strategies for a three-phase microgrid in different operating condition with droop control and damping factor investigation’, IET Renew. Power Gener., 2015, 9, (7), pp. 831839.
    13. 13)
      • 13. Ramezani, M., Li, S., Sun, Y.: ‘Combining droop and direct current vector control for control of parallel inverters in microgrid’, IET Renew. Power Gener., 2016, 11, (1), pp. 107114.
    14. 14)
      • 14. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘Nonlinear load sharing and voltage compensation of microgrids based on harmonic power-flow calculations using radial basis function neural networks’, IEEE Syst. J., 2017, 12, (3), pp. 27492759.
    15. 15)
      • 15. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B.: ‘Real-time verification of new controller to improve small/large-signal stability and fault ride-through capability of multi-DER microgrids’, IET Gener. Transm. Distrib., 2016, 10, (12), pp. 30683084.
    16. 16)
      • 16. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B.: ‘Power calculation using RBF neural networks to improve power sharing of hierarchical control scheme in multi-DER microgrids’, IEEE J. Emerging Sel. Topics Power Electron., 2016, 4, (4), pp. 12171225.
    17. 17)
      • 17. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., et al: ‘Unbalanced harmonic power sharing and voltage compensation of microgrids using radial basis function neural network-based harmonic power-flow calculations for distributed and decentralised control structures’, IET Gener. Transm. Distrib., 2018, 12, (7), pp. 15181530.
    18. 18)
      • 18. Li, Y.W., Kao, C.N.: ‘An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid’, IEEE Trans. Power Electron., 2009, 24, (12), pp. 29772988.
    19. 19)
      • 19. Yao, W., Chen, M., Matas, J., et al: ‘Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 576588.
    20. 20)
      • 20. Wang, Y., Chen, Z., Wang, X., et al: ‘An estimator-based distributed voltage-predictive control strategy for AC islanded microgrids’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 39343951.
    21. 21)
      • 21. Han, H., Liu, Y., Sun, Y., et al: ‘An improved droop control strategy for reactive power sharing in islanded microgrid’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 31333141.
    22. 22)
      • 22. Sun, X., Hao, Y., Wu, Q., et al: ‘A multifunctional and wireless droop control for distributed energy storage units in islanded AC microgrid applications’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 736751.
    23. 23)
      • 23. Simpson-Porco, J.W., Shafiee, Q., Dörfler, F., et al: ‘‘Secondary frequency and voltage control of islanded microgrids via distributed averaging’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 70257038.
    24. 24)
      • 24. Yang, X., Du, Y., Su, J., et al: ‘An optimal secondary voltage control strategy for an islanded multibus microgrid’, IEEE J. Emerging Sel. Topics Power Electron., 2016, 4, (4), pp. 12361246.
    25. 25)
      • 25. Lin, L., Ma, H., Bai, Z.: ‘An improved proportional load-sharing strategy for meshed parallel inverters system with complex impedances’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 73387351.
    26. 26)
      • 26. He, J., Li, Y.W.: ‘Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation’, IEEE Trans. Ind. Appl., 2011, 47, (6), pp. 25252538.
    27. 27)
      • 27. He, J., Li, Y.W., Guerrero, J.M., et al: ‘An islanding microgrid power sharing approach using enhanced virtual impedance control scheme’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 52725282.
    28. 28)
      • 28. Mahmood, H., Michaelson, D., Jiang, J.: ‘Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 16051617.
    29. 29)
      • 29. Zhang, H., Kim, S., Sun, Q., et al: ‘Distributed adaptive virtual impedance control for accurate reactive power sharing based on consensus control in microgrids’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 17491761.
    30. 30)
      • 30. Moradi, M.H., Eskandari, M., Siano, P.: ‘Safe transition from connection mode to islanding mode in Microgrids’. Proc. 24th Iranian Conf. Electrical Engineering, Shiraz, Iran, May 2016, pp. 19021907.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5303
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5303
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address