http://iet.metastore.ingenta.com
1887

Interleaved boost converter for global maximum power extraction from the photovoltaic system under partial shading

Interleaved boost converter for global maximum power extraction from the photovoltaic system under partial shading

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Partial shading (PS) condition has a negative effect on the shaded photovoltaic (PV) modules/arrays itself. In addition, it reduces the output power generated considerably. The PV system configuration represents one of the effective solutions to alleviate the PS effects and extract the global maximum power (GMP) available from the partially shaded PV (PSPV) system. This study introduces a detailed performance analysis and comparisons of four proposed PV system configurations [module integrated converter (MIC), multi-strings interfaced interleaved boost converter (MSIBC), multi-arrays interfaced IBC and single array single converter (SASC)] in terms of output power generated and mismatch loss (MML) index. The selection of the best PV system configuration, which not only mitigates the PS effects but also extracts the GMP available from the PSPV system, depends on a trade-off between the generated power, cost and complexity before judging which one is preferable. Although the MIC PV system has the highest output power generated (33 kW) and MML (100%), it increases the PV system complexity. Whereas, MSIBC has the second highest output power generated (28 kW) and MML compared to MIC. SASC has the lowest generated power and MML among the four configurations. The finding proves that MSIBC has superior performance compared to the other PV system configurations considering both the technical and economic assessment.

References

    1. 1)
      • 1. Maghami, M.R., Hizam, H., Gomes, C., et al: ‘Power loss due to soiling on solar panel: a review’, Renew. Sust. Energy Rev., 2016, 59, pp. 13071316.
    2. 2)
      • 2. Eltamaly, A.M.: ‘Performance of smart maximum power point tracker under partial shading conditions of photovoltaic systems’, J. Renew. Sustain. Energy, 2015, 7, (4), p. 043141.
    3. 3)
      • 3. Eltamaly, A.M.: ‘Performance of MPPT techniques of photovoltaic systems under normal and partial shading conditions’, in ‘Advances in renewable energies and power technologies’ (Elsevier, 2018), pp. 115161.
    4. 4)
      • 4. Duong, M.Q., Sava, G.N., Ionescu, G., et al: ‘Optimal bypass diode configuration for PV arrays under shading influence’. 2017 IEEE Int. Conf. on Environment and Electrical Engineering and Industrial and Commercial Power Systems Europe, (EEEIC/I&CPS Europe), Milan, Italy, 2017.
    5. 5)
      • 5. Hemandez, J., Garcia, O., Jurado, F.: ‘Photovoltaic devices under partial shading conditions’, Int. Rev. Model. Simul., 2012, 5, (1), pp. 414425.
    6. 6)
      • 6. Silvestre, S., Chouder, A.: ‘Effects of shadowing on photovoltaic module performance’, Prog. Photovolt., Res. Appl., 2008, 16, (2), pp. 141149.
    7. 7)
      • 7. Arunkumari, T., Indragandhi, V.: ‘An overview of high voltage conversion ratio DC–DC converter configurations used in DC micro-grid architectures’, Renew. Sust. Energy Rev., 2017, 77, pp. 670687.
    8. 8)
      • 8. Babu, T.S., Rajasekar, N., Sangeetha, K.: ‘Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition’, Appl. Soft Comput., 2015, 34, pp. 613624.
    9. 9)
      • 9. Ishaque, K., Salam, Z., Amjad, M., et al: ‘An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 36273638.
    10. 10)
      • 10. Ishaque, K., Salam, Z.: ‘A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 31953206.
    11. 11)
      • 11. Sarvi, M., Ahmadi, S., Abdi, S.: ‘A PSO-based maximum power point tracking for photovoltaic systems under environmental and partially shaded conditions’, Prog. Photovolt., Res. Appl., 2015, 23, (2), pp. 201214.
    12. 12)
      • 12. Chekired, F., Mellit, A., Kalogirou, S., et al: ‘Intelligent maximum power point trackers for photovoltaic applications using FPGA chip: a comparative study’, Sol. Energy, 2014, 101, pp. 8399.
    13. 13)
      • 13. Kamarzaman, N.A., Tan, C.W.: ‘A comprehensive review of maximum power point tracking algorithms for photovoltaic systems’, Renew. Sust. Energy Rev., 2014, 37, pp. 585598.
    14. 14)
      • 14. Messai, A., Mellit, A., Guessoum, A., et al: ‘Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation’, Sol. Energy, 2011, 85, (2), pp. 265277.
    15. 15)
      • 15. Farh, H.M., Eltamaly, A.M., Othman, M.F.: ‘Hybrid PSO-FLC for dynamic global peak extraction of the partially shaded photovoltaic system’, PloS one, 2018, 13, (11), p. e0206171.
    16. 16)
      • 16. Farh, H.M., Eltamaly, A.M., Othman, M.F.: ‘A novel evaluation index for the photovoltaic maximum power point tracker techniques’, Sol. Energy, 2018, 174, pp. 940956.
    17. 17)
      • 17. Titri, S., Larbes, C., Toumi, K.Y.: ‘A new MPPT controller based on the Ant colony optimization algorithm for photovoltaic systems under partial shading conditions’, Appl. Soft Comput., 2017, 58, pp. 465479.
    18. 18)
      • 18. Eltamaly, A.M., Farh, H.M.: ‘Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC’, Sol. Energy, 2019, 177, pp. 306316.
    19. 19)
      • 19. Bidram, A., Davoudi, A., Balog, R.S.: ‘Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays’, IEEE J. Photovoltaics, 2012, 2, (4), pp. 532546.
    20. 20)
      • 20. Ramaprabha, R., Mathur, B.: ‘A comprehensive review and analysis of solar photovoltaic array configurations under partial shaded conditions’, Int. J. Photoenergy, 2012, 2012, http://dx.doi.org/10.1155/2012/120214.
    21. 21)
      • 21. Wang, Y.-J., Hsu, P.-C.: ‘Analysis of partially shaded PV modules using piecewise linear parallel branches model’, World. Acad. Sci. Eng. Technol., 2009, 60, (2), pp. 783789.
    22. 22)
      • 22. Wang, Y.-J., Hsu, P.-C.: ‘An investigation on partial shading of PV modules with different connection configurations of PV cells’, Energy, 2011, 36, (5), pp. 30693078.
    23. 23)
      • 23. Belhachat, F., Larbes, C.: ‘Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions’, Renew. Sust. Energy Rev., 2017, 77, pp. 875889.
    24. 24)
      • 24. Kaushika, N.D., Gautam, N.K.: ‘Energy yield simulations of interconnected solar PV arrays’, IEEE Trans. Energy Convers., 2003, 18, (1), pp. 127134.
    25. 25)
      • 25. Das, S.K., Verma, D., Nema, S., et al: ‘Shading mitigation techniques: state-of-the-art in photovoltaic applications’, Renew. Sust. Energy Rev., 2017, 78, pp. 369390.
    26. 26)
      • 26. Xia, Q.: ‘Solar photovoltaic system modeling and control’. Dissertation, University of Denver, 2012.
    27. 27)
      • 27. Kandemir, E., Cetin, N.S., Borekci, S.: ‘A comprehensive overview of maximum power extraction methods for PV systems’, Renew. Sust. Energy Rev., 2017, 78, pp. 93112.
    28. 28)
      • 28. Dhople, S.V., Ehlmann, J.L., Davoudi, A., et al: ‘Multiple-input boost converter to minimize power losses due to partial shading in photovoltaic modules’. 2010 IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, GA, USA, 2010.
    29. 29)
      • 29. Khosroshahi, A., Abapour, M., Sabahi, M.: ‘Reliability evaluation of conventional and interleaved DC–DC boost converters’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 58215828.
    30. 30)
      • 30. Henn, G.A., Silva, R., Praca, P.P., et al: ‘Interleaved-boost converter with high voltage gain’, IEEE Trans. Power Electron., 2010, 25, (11), pp. 27532761.
    31. 31)
      • 31. Yang, B., Li, W., Zhao, Y., et al: ‘Design and analysis of a grid-connected photovoltaic power system’, IEEE Trans. Power Electron., 2010, 25, (4), pp. 9921000.
    32. 32)
      • 32. Ramaprabha, R., Balaji, K., Raj, S., et al: ‘Comparison of interleaved boost converter configurations for solar photovoltaic system interface’, J. Eng. Res., 2013, 10, (2), pp. 8798.
    33. 33)
      • 33. Aghdam, F.H., Hagh, M.T., Abapour, M.: ‘Reliability evaluation of two-stage interleaved boost converter interfacing PV panels based on mode of use’. 2016 7th Power Electronics and Drive Systems Technologies Conf. (PEDSTC), Tehran, Iran, 2016.
    34. 34)
      • 34. Khadmun, W., Subsingha, W.: ‘High voltage gain interleaved dc boost converter application for photovoltaic generation system’, Energy Procedia, 2013, 34, pp. 390398.
    35. 35)
      • 35. Rehman, Z., Al-Bahadly, I., Mukhopadhyay, S.: ‘Multiinput DC–DC converters in renewable energy applications–an overview’, Renew. Sust. Energy Rev., 2015, 41, pp. 521539.
    36. 36)
      • 36. Lakpathi, G., Reddy, S.M., Ganesh, K.L., et al: ‘An effective high step-up interleaved DC–DC converter photovoltaic grid connection system’, Int. J. Soft Comput. Eng., 2013, 3, (4), pp. 22312307.
    37. 37)
      • 37. Ishaque, K., Salam, Z.: ‘A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition’, Renew. Sust. Energy Rev., 2013, 19, pp. 475488.
    38. 38)
      • 38. Ishaque, K., Salam, Z., Taheri, H., et al: ‘Maximum power point tracking for PV system under partial shading condition via particle swarm optimization’. Applied Power Electronics Colloquium (IAPEC), Johor Bahru, Malaysia, 2011.
    39. 39)
      • 39. Liu, Y., Xia, D., He, Z.: ‘MPPT of a PV system based on the particle swarm optimization’. 4th Int. Conf. on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Weihai, Shandong, China, 2011.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5256
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5256
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address