Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Comprehensive frequency regulation scheme for permanent magnet synchronous generator-based wind turbine generation system

Due to a growing penetration of permanent magnet synchronous generator-based wind turbine generation (PMSG-WTG) systems into the modern power grid, there is a strong interest in leveraging the potential capabilities of PMSG-WTG system to participate in the system frequency regulation during the grid event. In this work, a novel comprehensive frequency regulation (CFR) scheme is proposed specifically for rotor-speed-control-oriented PMSG-WTG systems. The step-wise inertial power response enables PMSG to perform the temporary frequency support. The rotor speed and pitch angle controllers are coordinated to curtail the wind power output for the persistent de-loaded operation, which can facilitate the primary frequency regulation through the variable-slope droop control. Furthermore, this CFR control scheme is implemented into the controls advanced research turbine 2 (CART2)-PMSG model, so as to investigate its potential impact on the structural loads of wind turbine. Simulation results show CFR can dramatically enhance overall frequency regulation capability of the PMSG-WTG's system and mitigate the frequency oscillations over a full range of wind speeds without causing large mechanical damages to the wind turbine.

References

    1. 1)
      • 9. Zhang, Z., Sun, Y., Lin, J., et al: ‘Coordinated frequency regulation by doubly fed induction generator-based wind power plants’, IET Renew. Power Gener., 2012, 6, (1), pp. 3847.
    2. 2)
      • 1. Liu, Y., Liu, Y., Gracia, J., et al: ‘Variable-speed wind generation control for frequency regulation in the eastern interconnection’. 2014 IEEE Transmission and Distribution Conf. and Exposition (T&D), April 2014, pp. 15.
    3. 3)
      • 6. Sun, Y., Zhang, Z., Li, G., et al: ‘Review on frequency control of power systems with wind power penetration’. 2010 Int. Conf. on Power System Technology, Beijing, China, October 2010, pp. 2428.
    4. 4)
      • 33. Glover, J.D., Overbye, T.J., Sarma, M.S.: ‘Power system analysis and design’ (Cengage Learning Press, Connecticut, USA, 2015, 6th edn.).
    5. 5)
      • 13. Wang, Y., Delille, G., Bayem, H., et al: ‘High wind power penetration in isolated power systems-assessment of wind inertial and primary frequency response’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 24122420.
    6. 6)
      • 17. Fu, Y., Wang, Y., Zhang, X.: ‘Integrated wind turbine controller with virtual inertia and primary frequency responses for grid dynamic frequency support’, IET Renew. Power Gener., 2017, 11, (8), pp. 11291113.
    7. 7)
      • 12. Ruttledge, L., Flynn, D.: ‘Emulated inertial response from wind turbines: gain scheduling and resources coordination’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 37473755.
    8. 8)
      • 29. Singh, M., Muljadi, E., Jonkman, J., et al: ‘Simulation for wind turbine generators-with FAST and MATLAB-Simulink modules’ (NREL, Golden, CO, USA, 2014).
    9. 9)
      • 39. Fleming, P.A., Aho, J., Buckspan, A., et al: ‘Effects of power reserve control on wind turbine structural loading’, Wind Energy, 2015, 19, (3), pp. 453469.
    10. 10)
      • 22. Luo, H., Hu, Z., Zhang, H., et al: ‘Coordinated active power control strategy for deloaded wind turbines to improve regulation performance in AGC’, IEEE Trans. Power Syst., 2018, Early Access.
    11. 11)
      • 36. Jonkman, B.J., Kilcher, L.: ‘Turbsim user's guide version 1.06.00’ (NREL, Golden, CO, USA, 2012).
    12. 12)
      • 21. Ashouri, A., Toulabi, M., Ranjbar, A.: ‘Coordinated design of fuzzy-based speed controller and auxiliary controllers in a variable speed wind turbine to enhance frequency control’, IET Renew. Power Gener., 2016, 10, (9), pp. 12981308.
    13. 13)
      • 32. Kuschke, M., Strunz, K.: ‘Energy-efficient dynamic drive control for wind power conversion with PMSG: modeling and application of transfer function’, IEEE J. Emerging Sel. Top. Power Electron., 2014, 2, (1), pp. 3546.
    14. 14)
      • 35. Wright, A.D., Fingersh, L.J.: ‘Advanced control design for wind turbines part I: control design, implementation and inital Tests’ (NREL, Golden, CO, USA, 2008).
    15. 15)
      • 34. Yazdani, A., Iravani, R.: ‘Voltage-sourced converters in power systems: modeling, control and applications’ (Wiley-IEEE Press, New Jersey, USA, 2010).
    16. 16)
      • 4. Sharma, S., Huang, S., Sarma, N.: ‘System inertial frequency response estimation and impact of renewable resources in ERCOT interconnection’. Proc. IEEE Power Engineering Society General Meeting, Detroit, USA, July 2011.
    17. 17)
      • 8. Ahuja, H., Bhuvaneswari, G., Balasubramanian, R.: ‘Performance comparison of DFIG and PMSG based WECS’. IET Conf. on Renewable Power Generation, September 2011, pp. 16.
    18. 18)
      • 18. Conroy, J.F., Watson, R.: ‘Frequency response capability of full converter wind turbine generators in comparison to conventional generation’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 11291137.
    19. 19)
      • 16. Ghosh, S., Kamalasadan, S., Senroy, N., et al: ‘Doubly fed induction generator (DFIG)-based wind farm control framework for primary frequency and inertial response application’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 18611871.
    20. 20)
      • 31. Hemeida, A., Frag, W., Mahgoub, O.: ‘Modelling and control of direct driven PMSG for ultra large wind turbines’, Energy Power Eng., 2011, 5, (11), pp. 12691275.
    21. 21)
      • 26. Miao, L., Wen, J., Xie, H., et al: ‘Coordinated control strategy of wind turbine generator and energy storage equipment for frequency support’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 27322742.
    22. 22)
      • 2. Liu, Y., Gracia, J., King, T., et al: ‘Frequency regulation and oscillation damping contributions of variable-speed wind generators in the U.S. Eastern interconnection (EI)’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 951958.
    23. 23)
      • 10. Gowaid, I.A., EI-Zawawi, A., El-Gammal, M.: ‘Improved inertia and frequency support from grid-connected DFIG wind farms’. Power System Conf. and Exposition (PSCE), March 2011, pp. 19.
    24. 24)
      • 20. Toulabi, M., Dobakhshari, A., Ranjbar, A.: ‘Optimal robust first-order frequency controller design for DFIG-based wind farm utilising 16-plant theorem’, IET Renew. Power Gener., 2018, 12, (3), pp. 298310.
    25. 25)
      • 19. Wang, X., Gao, W., Scholbrock, A., et al: ‘Evaluation of different inertial contorl methods for variable-speed wind turbines simulated by fatigue, aerodynamic, structures and turbulence (FAST)’, IET Renew. Power Gener., 2017, 11, (12), pp. 15341544.
    26. 26)
      • 30. Rolan, A., Luna, A., Vazquez, G., et al: ‘Modeling of a variable speed wind turbine with a permanent magnet synchronous generator’. Proc. 2009 IEEE Int. Symp. on Industrial Electronics, July 2009, pp. 734739.
    27. 27)
      • 27. Fu, Y., Huang, L., Zhang, H., et al: ‘DFIG virtual inertia control in micro-grid based on setting trigger condition and ZN method for parameters optimisation’, IET Gener. Transm. Distrib., 2017, 11, (15), pp. 37653775.
    28. 28)
      • 38. Hayman, G.J., Buhl, M.Jr: ‘MLife user's guide for version 1.00’ (NREL, Golden, CO, USA, 2012).
    29. 29)
      • 5. Ruttledge, L., Flynn, D.: ‘Co-ordination of frequency responsive wind plant in future power system’. 2nd IET Renewable Power Generation Conf., Beijing, September 2013, pp. 14.
    30. 30)
      • 23. Tan, J., Zhang, Y.: ‘Coordinated control strategy of a battery energy storage system to support a wind power plant providing multi-timescale frequency ancillary services’, IEEE Trans. Sustain. Energy, 2017, 8, (3), pp. 11401153.
    31. 31)
      • 25. Yao, J., Yu, M., Gao, W., et al: ‘Frequency regulation control strategy for PMSG wind-power generation system with flywheel energy storage unit’, IET Renew. Power Gener., 2017, 11, (8), pp. 10821093.
    32. 32)
      • 3. Miller, N., Clark, K.: ‘Impact of frequency responsive wind plant controls on grid performance’. 9th Int. Workshop on Large-scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms, Québec, Canada, October 2010.
    33. 33)
      • 7. Li, S., Haskew, T., Xu, L.: ‘Conventional and novel control designs for direct driven PMSG wind turbines’, Electr. Power Syst. Res., 2010, 80, (3), pp. 328338.
    34. 34)
      • 11. Yang, Y., Meng, J., Zhang, X., et al: ‘Control of PMSG-based wind turbines for system inertial response and power oscillation damping’, IEEE Trans. Sustain. Energy, 2015, 6, (2), pp. 565574.
    35. 35)
      • 37. Wright, A.D.: ‘Modern control for flexible wind turbines’ (NREL, Golden, CO, USA, 2004).
    36. 36)
      • 15. De Vyver, J.V., Kooning, J.D.M., Meersman, B., et al: ‘Droop control as an alternative inertial response strategy for the synthetic inertia on wind turbines’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 11291138.
    37. 37)
      • 14. Margaris, I.D., Papathanassiou, S.A., Hatziargyriou, N.D., et al: ‘Frequency control in autonomous power systems with high wind power penetration’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 189199.
    38. 38)
      • 24. Wu, Z., Gao, W., Zhang, H., et al: ‘Coordinated control strategy of battery energy storage system and PMSG-WTG to enhance system frequency regulation capability’, IEEE Trans. Sustain. Energy, 2017, 8, (3), pp. 13301343.
    39. 39)
      • 28. Wu, Z., Gao, W., Wang, X., et al: ‘Improved inertial control for permanent magent synchronous generator wind turbine generators’, IET Renew. Power Gener., 2016, 10, (9), pp. 13661373.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5247
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5247
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address