http://iet.metastore.ingenta.com
1887

Control of asymmetrical cascaded multilevel inverter for a grid-connected photovoltaic system

Control of asymmetrical cascaded multilevel inverter for a grid-connected photovoltaic system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This article presents a generalised asymmetrical cascaded multilevel inverter (MLI) for a single-phase grid-connected photovoltaic (PV) system and their control strategy. The control strategy, including maximum power tracking along with a suitable interface, is implemented for maximum power transfer from the PV source to the single-phase low-power grid. The balancing of DC-link voltages for an asymmetrical MLI under variable solar parameters as well as grid parameter variation is implemented using the proposed control strategy. The voltage controllers maintain the constant DC-link voltage ratio, whereas the current controller injects the sinusoidal current into the grid at unity power factor and track the grid voltage under variation of grid voltage using grid tracker. Stability analysis of the proposed grid-connected asymmetrical inverter system is also incorporated. The whole grid-tied PV system is simulated in the MATLAB/SIMULINK environment and the exhaustive simulation results of the system under different transient conditions are presented. In addition, a laboratory prototype for a low-power grid-tied PV system has been developed and implemented using DS1103. The performance of the system is also tested at varying irradiance conditions and the corresponding experimental results are also presented.

References

    1. 1)
      • 1. Calais, M., Agelidis, V.G.: ‘Multilevel converters for single-phase grid connected photovoltaic systems-an overview’. Proc. IEEE Int. Symp. Industrial Electronics, Pretoria, South Africa, 1998, vol. 1, pp. 224229.
    2. 2)
      • 2. Franquelo, L.G., Rodriguez, J., Leon, J.I., et al: ‘The age of multilevel converter arrives’, IEEE Ind. Electron. Mag., 2008, 2, (2), pp. 2839.
    3. 3)
      • 3. Rodriguez, J., Franquelo, L.G., Kouro, S., et al: ‘Multilevel converters: an enabling technology for high-power applications’, Proc. IEEE, 2009, 97, (11), pp. 17861817.
    4. 4)
      • 4. Sinha, A., Jana, K.C., Das, M.K.: ‘An inclusive review on different multi-level inverter topologies, their modulation and control strategies for a grid connected photo-voltaic system’, Sol. Energy, 2018, 170, pp. 633657.
    5. 5)
      • 5. Debnath, S., Qin, J, Bahrani, B., et al: ‘Operation, control and applications of the modular multilevel converter: a review’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 3753.
    6. 6)
      • 6. Lai, J.S., Peng, F. Z.: ‘Multilevel converters—a new breed of power converters’, IEEE Trans. Ind. Electron., 1996, 32, (3), pp. 21652178.
    7. 7)
      • 7. Fazel, S.S., Bernet, S., Krug, D., et al: ‘Design and comparison of 4-kV neutral-point-clamped, flying-capacitor, and series-connected H-bridge multilevel converters’, IEEE Trans. Ind. Appl., 2007, 43, (4), pp. 10321040.
    8. 8)
      • 8. Xiao, B., Hang, L., Mei, J., et al: ‘Modular cascaded h-bridge multilevel PV inverter with distributed MPPT for grid-connected applications’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 13581365.
    9. 9)
      • 9. Townsend, C.D., Yu, Y., Konstantinou, G., et al: ‘Cascaded H-bridge multilevel PV topology for alleviation of per-phase power imbalances and reduction of second harmonic voltage ripple’, IEEE Trans. Power Electron., 2016, 31, (8), pp. 55745586.
    10. 10)
      • 10. Rabinovici, R., Baimel, D., Tomasik, J., et al: ‘Thirteen-level cascaded h-bridge inverter operated by generic phase shifted pulse-width modulation’, IET Power Electron., 2013, 6, (8), pp. 15161529.
    11. 11)
      • 11. Sowjanya, T., Veerendranath, K.: ‘Cascaded H-bridge with single DC source and regulated capacitor voltage’, Int. J. Adv. Sci. Technol., 2014, 73, (5), pp. 89102.
    12. 12)
      • 12. Mahato, B., Raushan, R., Jana, K.C.: ‘Modulation and control of multilevel inverter for an open-end winding induction motor with constant voltage levels and harmonics’, IET Power Electron., 2017, 9, (8), pp. 16001607.
    13. 13)
      • 13. Jana, K.C., Biswas, S.K., KarChaudhary, S.: ‘Dual reference phase shifted PWM technique for a N-level inverter based grid connected solar photovoltaic system’, IET Renew. Power Gener., 2016, 10, (7), pp. 928935.
    14. 14)
      • 14. Villanueva, E., Correa, P., Rodriguez, J.: ‘Control of single phase cascaded H-bridge multilevel inverter for grid connected photovoltaic systems’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 43994406.
    15. 15)
      • 15. Augusto, S., Silva1, O., Sampaio, L.P., et al: ‘Feed-forward DC-bus control loop applied to a single-phase grid-connected PV system operating with PSO-based MPPT technique and active power-line conditioning’, IET Renew. Power Gener., 2017, 11, (1), pp. 183193.
    16. 16)
      • 16. Butticchi, G., Barater, D., Lorenzani, E., et al: ‘A nine level grid connected converter topology for single phase transformerless PV systems’, IEEE Trans. Ind. Electron., 2011, 61, (8), pp. 39513960.
    17. 17)
      • 17. Selvaraj, J., Rahim, N.A.: ‘Multilevel inverter for grid-connected PV system employing digital PI controller’, IEEE Trans. Ind. Electron., 2009, 56, (1), pp. 149158.
    18. 18)
      • 18. Patrao, I., Garcerá, G., Figueres, E., et al: ‘Grid-tie inverter topology with maximum power extraction from two photovoltaic arrays’, IET Renew. Power Gener., 2014, 8, (6), pp. 638648.
    19. 19)
      • 19. Meza, C., Negroni, J.J., Biel, D., et al: ‘Energy-balance modelling and discrete control for single-phase grid-connected PV central inverters’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 27342743.
    20. 20)
      • 20. Iman-Eini, H., Schanen, J.-L., Farhangi, S., et al: ‘A modular strategy for control and voltage balancing of cascaded H-bridge rectifiers’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 24282442.
    21. 21)
      • 21. Fuentes, C.D., Rojas, C.A., Renaudineau, H., et al: ‘Experimental validation of a single DC bus cascaded H-bridge multilevel inverter for multistring photovoltaic systems’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 930934.
    22. 22)
      • 22. Neyshabouri, Y., Iman-Eini, H., Miranbeigi, M.: ‘State feedback control strategy and voltage balancing scheme for a transformer-less STATic synchronous COMpensator based on cascaded H-bridge converter’, IET Power Electron., 2015, 8, (6), pp. 906917.
    23. 23)
      • 23. McGrath, B.P., Holmes, D.G.: ‘Multicarrier PWM strategies for PWM inverters’, IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 858867.
    24. 24)
      • 24. Angulo, M., Lezana, P., Kouro, S., et al: ‘Level-shifted PWM for cascaded multilevel inverters with even power distribution’. IEEE Power Electronics Specialist Conf., Orlando, FL, USA, 2007, vol. 2, pp. 23732378.
    25. 25)
      • 25. Jana, K.C., Biswas, S.K., Chowdhury, S.: ‘Performance evaluation of a simple and general space vector pulse-width modulation-based M-level inverter including over-modulation operation’, IET Power Electron., 2013, 6, (4), pp. 809817.
    26. 26)
      • 26. Jana, K.C., Biswas, S.K.: ‘A generalized switching scheme for a SVPWM based N-level inverter with reduced switching frequency and harmonics’, IET Power Electron., 2015, 8, (12), pp. 23772385.
    27. 27)
      • 27. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 189195.
    28. 28)
      • 28. Aureliano, M., Galotto, L., Poltroonery, L.: ‘Evaluation of the main MPPT techniques for photovoltaic applications’, IEEE Trans. Ind. Electron., 2013, 60, (3), pp. 11561167.
    29. 29)
      • 29. Muthuramalingama, M., Manohara, P.: ‘Comparative analysis of distributed MPPT controllers for partially shaded stand alone photovoltaic systems’, Energy Convers. Manage., 2014, 86, pp. 286299.
    30. 30)
      • 30. Rockhill, A., Liserre, M., Teodorescu, R., et al: ‘Grid-Filter design for a multimegawatt medium-voltage voltage-source inverter’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 11621170.
    31. 31)
      • 31. Cespedes, M., Jian, S.: ‘Methods for stability analysis of unbalanced three-phase systems’. IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 2012, vol. 1, pp. 30903097.
    32. 32)
      • 32. Cespedes, M., Jian, S.: ‘Impedance modeling and analysis of grid- connected voltage-source converters’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 12541261.
    33. 33)
      • 33. IEEE STD 519-1992: ‘IEEE recommended practices and requirement for harmonic control in electric power systems’, Institute of Electrical and Electronic Engineers, Inc., 1993.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5230
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5230
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address