http://iet.metastore.ingenta.com
1887

Variable learning adaptive gradient based control algorithm for voltage source converter in distributed generation

Variable learning adaptive gradient based control algorithm for voltage source converter in distributed generation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents an adaptive control algorithm known as variable learning and adaptive gradient based least mean square for improving the power quality features in standalone distributed generation. Further, frequency and voltage are regulated to set reference value at the terminal of the self-excited single-phase induction generator running in isolated mode. The variable learning and gradient-based least mean square (VLGLMS) algorithm is insensitive to its gradient, step size and sensors noise unlike least mean square algorithm whose convergence performance is influenced by the step-size parameter. In this study, VLGLMS is utilised to compute the active and reactive weights of fundamental load current for estimation of the reference source current. The sinusoidal reference current estimation is followed by generation of gate pulses for operating the DSTATCOM for improving the power quality features of single-phase induction generator based distributed power generation system. A prototype model is developed using MATLAB SIMULINK and tested in the laboratory under linear and non-linear loads. Based on implementation, the performance of control algorithm is validated and obtained results are found satisfactory.

References

    1. 1)
      • 1. Jha, A.R.: ‘Wind turbine technology’ (CRC Press, Taylor and Fransis Group, London, 2011).
    2. 2)
      • 2. Godoy Simoes, M., Farret, F.A.: ‘Alternate energy systems, design and analysis with induction generators’ (CRC Press, Tailor and Fransis Group, London, 2008, 2nd edn.).
    3. 3)
      • 3. Stiebler, M.: ‘Wind energy systems for electric power generation’ (Green Energy and Technology, Springer–Verlag, Berlin Heidelberg, 2008).
    4. 4)
      • 4. Borbely, A.M., Kreider, J.F.: ‘Distributed generation: the power paradigm for the new millennium’ (CRC Press, Boca Raton, Florida (USA), 2001).
    5. 5)
      • 5. Godavarti, M., Hero, A.O.: ‘Partial update LMS algorithms’, IEEE Trans. Signal Process., 2005, 53, (7), pp. 23822399.
    6. 6)
      • 6. Kohli, A.M., Mehra, D.K.: ‘Tracking of time–varying channels using two–step lms–type adaptive algorithm’, IEEE Trans. Signal Process., 2006, 54, (7), pp. 26062615.
    7. 7)
      • 7. Das, D.P., Mohapatra, S.R., Routray, A., et al: ‘Filtered–s LMS algorithm for multichannel active control of nonlinear noise processes’, IEEE Trans. Speech Audio Process., 2006, 14, (5), pp. 18751880.
    8. 8)
      • 8. Choi, Y.-S., Shin, H.-C., Song, W.-J.: ‘Robust regularization for normalized LMS algorithms’, IEEE Trans. Circuits Syst.–II: Express Briefs, 2006, 53, (8), pp. 627631.
    9. 9)
      • 9. Das, D.P., Panda, G., Kuo, S.M.: ‘New block filtered–X LMS algorithms for active noise control systems’, IET Signal Process., 2007, 1, (2), pp. 7381.
    10. 10)
      • 10. Singh, B., Murthy, S.S., Gupta, S.: ‘An electronic voltage and frequency controller for single–phase self-excited induction generators for pico hydro applications’. Proc. of IEEE Power Electronics Drives System Conf., Kuala Lumpur, Malaysia, 2005, vol. 1, pp. 240245.
    11. 11)
      • 11. Vega, L.R., Rey, H., Benesti, J., et al: ‘A fast robust recursive least-squares algorithm’, IEEE Trans. Signal Process., 2009, 57, (3), pp. 12091215.
    12. 12)
      • 12. Bhotto, M.Z.A., Antoniou, A.: ‘Robust recursive least-squares adaptive–filtering algorithm for impulsive–noise environment’, IEEE Signal Process. Lett., 2011, 18, (3), pp. 185188.
    13. 13)
      • 13. Foley, J.B., Boland, F.M.: ‘Comparison between steepest descent and LMS algorithms in adaptive filters’, IEE Proc., 1987, 134, (3), pp. 283289.
    14. 14)
      • 14. Górriz, J.M., Ramírez, J., Cruces-Alvarez, S., et al: ‘A novel LMS algorithm applied to adaptive noise cancellation’, IEEE Signal Process. Lett., 2009, 16, (1), pp. 3437.
    15. 15)
      • 15. Srar, J.A., Chung, K.-S., Mansour, A.: ‘Adaptive array beam forming using a combined LMS–LMS algorithm’, IEEE Trans. Antennas Propag., 2010, 58, (11), pp. 35453557.
    16. 16)
      • 16. Zanella, A., Chiani, M., Win, M.Z.: ‘Statistical analysis of steepest descend and LMS detection algorithms for MIMO systems’, IEEE Trans. Veh. Technol., 2011, 60, (9), pp. 46674672.
    17. 17)
      • 17. de Andrade, J.F.Jr., de Campos, M.L.R., Apolinário, J.A.Jr.: ‘L1-constrained normalized LMS algorithms for adaptive beam forming’, IEEE Trans. Signal Process., 2015, 63, (24), pp. 65246539.
    18. 18)
      • 18. Chien, Y.R., Tseng, W.J.: ‘Switching based variable step-size approach for partial update LMS algorithms’, IEEE Electron. Lett., 2013, 49, (17), pp. 10811083.
    19. 19)
      • 19. Eweda, E., Bershad, N.J.: ‘Stochastic analysis of the signed LMS algorithms for cyclostationary white Gaussian inputs’, IEEE Trans. Signal Process., 2017, 65, (7), pp. 16731684.
    20. 20)
      • 20. Kelly, J.W., Siewiorek, D.P., Smailagic, A., et al: ‘An adaptive filter for the removal of drifting sinusoidal noise without a reference’, IEEE J. Biomed. Health Inf., 2016, 20, (1), pp. 213221.
    21. 21)
      • 21. Narasimhan, S.V., Veena, S., Lokesha, H.: ‘Variable step-size Griffith's algorithm for improved performance of feed–forward/feedback active noise control’, J. Signal, Image Video Process., 2010, 4, (3), pp. 309317.
    22. 22)
      • 22. Abdullah, M.A., Yatim, A.H.M., Tan, C.W., et al: ‘A review of maximum power point tracking algorithms for wind energy systems’, J. Renew. Sustain. Energy Rev., 2012, 16, (5), pp. 32203227.
    23. 23)
      • 23. Chen, Z., Yin, M., Zou, Y., et al: ‘Maximum wind energy extraction for variable speed wind turbines with slow dynamic behavior’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 33213322.
    24. 24)
      • 24. Saravana Kumar, R., Jena, D.: ‘Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine’, Int. J. Electr. Power Energy Syst., 2015, 69, pp. 421429, 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5213
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5213
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address