http://iet.metastore.ingenta.com
1887

Constrained optimisation approach for parameter estimation of PV modules with single-diode equivalent model

Constrained optimisation approach for parameter estimation of PV modules with single-diode equivalent model

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study deals with estimation of five unknown parameters in single-diode equivalent model of photovoltaic (PV) modules. First, to simplify the problem, the unknown parameters are reduced to series resistance and diode thermal voltage. These two parameters have significant role for PV model identification. On the other hand, PV model has the least sensitivity to the choice of parallel resistance. Hence, an approximation is utilised for parallel resistance and large value is assigned to this electrical parameter. Thanks to the proposed approximation, a novel cost function is designed for the reduced model such that all of its optimum solutions remain in a small interval of the reduced model. A set of inequality constraints are defined to generate an almost convex optimisation problem with all solutions located in a very small set. The gradient update laws are developed to find the solutions in the tiny set forced by the constructed optimisation problem. The proposed estimation technique generates an accurate model for PV modules, especially at voltage values lower and equal to maximum voltage value.

References

    1. 1)
      • 1. Ghanbari, T., Khayam Hoseini, S.R.: ‘Kalman filter based technique for detection of anomalous condition of the photovoltaic panels’, IET Gener. Transm. Distrib., 2016, 10, pp. 36983706.
    2. 2)
      • 2. Chikh, A., Ambrish, C.: ‘Adaptive neuro-fuzzy based solar cell model’, IET Renew. Power Gener., 2014, 8, pp. 679686.
    3. 3)
      • 3. Khare, A., Rangnekar, S.: ‘A review of particle swarm optimization and its applications in solar photovoltaic system’, Appl. Soft Comput., 2013, 13, pp. 29973006.
    4. 4)
      • 4. Alam, D.F., Yousri, D.A., Eteiba, M.B.: ‘Flower pollination algorithm based solar PV parameter estimation’, Energy Convers. Manage., 2015, 101, pp. 410422.
    5. 5)
      • 5. Prasanth Ram, J., Sudhakar Babu, T., Dragicevic, T., et al: ‘A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation’, Energy Convers. Manage., 2017, 135, pp. 463476.
    6. 6)
      • 6. Rezaee Jordehi, A.: ‘Enhanced leader particle swarm optimisation (ELPSO): an efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules’, Sol. Energy, 2018, 159, pp. 7887.
    7. 7)
      • 7. Pillai, D.S., Rajasekar, N.: ‘Metaheuristic algorithms for PV parameter identification: a comprehensive review with an application to threshold setting for fault detection in PV systems’, Renew. Sust. Energy Rev., 2018, 82, pp. 35033525.
    8. 8)
      • 8. Hejri, M., Mokhtari, H., Azizian, M.R., et al: ‘On the parameter extraction of a five-parameter double-diode model of photovoltaic cells and modules’, IEEE J. Photovoltaics, 2014, 4, pp. 915923.
    9. 9)
      • 9. Yeh, W.-C., Lin, P., Huang, C.-L.: ‘Simplified swarm optimisation for the solar cell models parameter estimation problem’, IET Renew. Power Gener., 2017, 11, pp. 11661173.
    10. 10)
      • 10. Jain, A., Kapoor, A.: ‘Exact analytical solutions of the parameters of real solar cells using Lambert W-function’, Solar Energy Mater. Solar Cells, 2004, 81, pp. 269277.
    11. 11)
      • 11. Jain, A., Sharma, S., Kapoor, A.: ‘Solar cell array parameters using Lambert W-function’, Solar Energy Mater. Solar Cells, 2006, 90, pp. 2531.
    12. 12)
      • 12. Saleem, H., Karmalkar, S.: ‘An analytical method to extract the physical parameters of a solar cell from four points on the illuminated curve’, IEEE Electron Device Lett., 2009, 30, pp. 349352.
    13. 13)
      • 13. Laudani, A., Mancilla-David, F., Riganti-Fulginei, F., et al: ‘Reduced-form of the photovoltaic five-parameter model for efficient computation of parameters’, Sol. Energy, 2013, 97, pp. 122127.
    14. 14)
      • 14. Mahmoud, Y.A., Xiao, W., Zeineldin, H.H.: ‘A parameterization approach for enhancing PV model accuracy’, IEEE Trans. Ind. Electron., 2013, 60, pp. 57085716.
    15. 15)
      • 15. Elbaset, A.A., Ali, H., Abd-El Sattar, M.: ‘Novel seven-parameter model for photovoltaic modules’, Solar Energy Mater. Solar Cells, 2014, 130, pp. 442455.
    16. 16)
      • 16. Ma, T., Yang, H., Lu, L.: ‘Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/ strings/arrays’, Sol. Energy, 2014, 100, pp. 3141.
    17. 17)
      • 17. Soon, J.J., Low, K.-S.: ‘Photovoltaic model identification using particle swarm optimization with inverse barrier constraint’, IEEE Trans. Power Electron., 2012, 27, pp. 39753983.
    18. 18)
      • 18. Muhsen, D.H., Ghazali, A.B., Khatib, T., et al: ‘Parameters extraction of double diode photovoltaic module's model based on hybrid evolutionary algorithm’, Energy Convers. Manage., 2015, 105, pp. 552561.
    19. 19)
      • 19. Ting, T.O., Ma, J., Kim, K.S., et al: ‘Multicores and GPU utilization in parallel swarm algorithm for parameter estimation of photovoltaic cell model’, Appl. Soft Comput., 2016, 40, pp. 5863.
    20. 20)
      • 20. Oliva, D., Abd El Aziz, M., Hassanien, A.E.: ‘Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm’, Appl. Energy, 2017, 200, pp. 141154.
    21. 21)
      • 21. Bastidas-Rodriguez, J.D., Petrone, G., Ramos-Paja, C.A., et al: ‘A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel’, Math. Comput. Simul., 2017, 131, pp. 3854.
    22. 22)
      • 22. Tian, H., Mancilla-David, F., Ellis, E., et al: ‘A cell-to-module-to-array detailed model for photovoltaic panels’, Sol. Energy, 2012, 86, pp. 26952706.
    23. 23)
      • 23. Chakrasali, R., Sheelavant, V., Nagaraja, H.: ‘Network approach to modeling and simulation of solar photovoltaic cell’, Renew. Sust. Energy Rev., 2013, 21, pp. 8488.
    24. 24)
      • 24. Khezzar, R., Zereg, M., Khezzar, A.: ‘Modeling improvement of the four parameter model for photovoltaic modules’, Sol. Energy, 2014, 110, pp. 452462.
    25. 25)
      • 25. Celik, A.N., Acikgoz, N.: ‘Modeling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models’, Appl. Energy, 2007, 84, pp. 115.
    26. 26)
      • 26. Laudani, A., Fulginei, F.R., Salvini, A.: ‘Identification of the one-diode model for photovoltaic modules from datasheet values’, Sol. Energy, 2014, 108, pp. 432446.
    27. 27)
      • 27. Laudani, A., Fulginei, F.R., Salvini, A.: ‘High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I-V curves by using reduced forms’, Sol. Energy, 2014, 103, pp. 316326.
    28. 28)
      • 28. Moshksar, E., Ghanbari, T.: ‘Adaptive estimation approach for parameter identification of photovoltaic modules’, IEEE J. Photovoltaics, 2017, 7, pp. 614623.
    29. 29)
      • 29. Jena, D., Ramana, V.V.: ‘Modeling of photovoltaic system for uniform and non-uniform irradiance: A critical review’, Renew. Sust. Energy Rev., 2015, 52, pp. 400417.
    30. 30)
      • 30. Guay, M., Moshksar, E., Dochain, D.: ‘A constrained extremum-seeking control approach’, Int. J. Robust Nonlinear Control, 2015, 25, pp. 31323153.
    31. 31)
      • 31. Zaman, M.A., Hansen, P.C., Neustock, L.T, et al: ‘Adjoint method for estimating Jiles-Atherton hysteresis model parameters’, J. Appl. Phys., 2016, 120, p. 093903.
    32. 32)
      • 32. Giles, M.B., Pierce, N.A.: ‘An introduction to the adjoint approach to design’, Flow, Turbul. Combust., 2000, 65, pp. 393415.
    33. 33)
      • 33. Shongwe, S., Hanif, M.: ‘Comparative analysis of different single-diode PV modeling methods’, IEEE J. Photovoltaics, 2015, 5, pp. 938946.
    34. 34)
      • 34. Villalva, M.G., Gazoli, J.R., Filho, E.R.: ‘Comprehensive approach to modeling and simulation of photovoltaic arrays’, IEEE Trans. Power Electron., 2009, 24, pp. 11981208.
    35. 35)
      • 35. De Soto, W., Klein, S.A., Beckman, W.A.: ‘Improvement and validation of a model for photovoltaic array performance’, Sol. Energy, 2006, 80, pp. 7888.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5157
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5157
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address