© The Institution of Engineering and Technology
This study proposes a novel dual stator solid rotor axial flux induction motor (DSSRAFIM) for flywheel energy storage system and the computational methods for its equivalent circuit parameters. The quasionedimensional theory and the penetration depth method assume that the electromagnetic field distribution in the solid rotor is uniformly distributed, and they are appropriate for optimal design. The multilayer method takes the nonlinear permeability of the solid rotor into account, and it reduces the computational effort by simplifying the complicated computation into a transfer matrix. The twodimensional finite element method and the threedimensional finite element method can provide very accurate results, but they spend a large amount of computational effort. All these methods are improved, so that they are applicable to the DSSRAFIM. Also, these methods are verified by experimental test.
References


1)

1. Amiryar, M., Pullen, K.: ‘A review of flywheel energy storage system technologies and their applications’, Appl. Sci., 2017, 7, (3), p. 286.

2)

2. Gieras, J.F., Saari, J.: ‘Performance calculation for a highspeed solidrotor induction motor’, IEEE Trans. Ind. Electron., 2012, 59, (6), pp. 2689–2700.

3)

3. Pyrhonen, J., Nerg, J., Kurronen, P., et al: ‘Highspeed highoutput solidrotor inductionmotor technology for gas compression’, IEEE Trans. Ind. Electron., 2009, 57, (1), pp. 272–280.

4)

4. Valtonen, M.S.M., Parviainen, D.S.A., Pyrhonen, J.: ‘Electromagnetic field analysis of 3D structure of axialflux solidrotor induction motor’. Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion, Taormina, Italy, 2006, pp. 174–178.

5)

5. Wei, Q., Yu, F., Li, S.: ‘Analysis on electromagnetic field of an axialflux solid aluminum rotor induction motor’. Int. Conf. on Electrical Machines and Systems, Beijing, China, 2011, pp. 1–4.

6)

6. Nguyen, Q.D., Ueno, S.: ‘Analysis and control of nonsalient permanent magnet axial gap selfbearing motor’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 2644–2652.

7)

7. Nguyen, Q.D., Ueno, S.: ‘Modeling and control of salientpole permanent magnet axialgap selfbearing motor’, IEEE/ASME Trans. Mechatronics, 2011, 16, (3), pp. 518–526.

8)

8. Zhang, C., Tseng, K. J.: ‘A novel flywheel energy storage system with partiallyselfbearing flywheelrotor’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 477–487.

9)

9. Lin, F.J, Chen, S.Y., Huang, M.S.: ‘Tracking control of thrust active magnetic bearing system via hermite polynomialbased recurrent neural network’, IET Electr. Power Appl., 2010, 4, (9), pp. 701–714.

10)

10. Williamson, S, Robinson, M.J.: ‘Calculation of cage induction motor equivalent circuit parameters using finite elements’, IEE Proc. B, Electr. Power Appl., 1991, 138, (5), pp. 264–276.

11)

11. Yamazaki, K.: ‘Comparison of induction motor characteristics calculated from electromagnetic field and equivalent circuit determined by 3D FEM’, IEEE Trans. Magn., 2002, 36, (4), pp. 1881–1885.

12)

12. Sarma, M.: ‘Currentdensity distribution in solidrotor induction motor’, IEEE Trans. Magn., 1979, 15, (6), pp. 1473–1475.

13)

13. Tiegna, H., Bellara, A., Amara, Y., et al: ‘Analytical modeling of the opencircuit magnetic field in axial flux permanentmagnet machines with semiclosed slots’, IEEE Trans. Magn., 2012, 48, (3), pp. 1212–1226.

14)

14. Nasar, S.A., BoIdea, I.: ‘Linear motion electric machines’ (A WileyInterscience Publication, John Wiley and Sons, New York, NY, USA, 1976).

15)

15. Tang, X., Ning, Y., Fu, F.: ‘Solid rotor induction motor and its application’ (China Machine Press, Beijing, China, 1991).

16)

16. Chalmers, B.J., Hamdi, E.S.: ‘Multilayer analysis of compositerotor induction motor’, Electr. Mach. Power Syst., 1982, 7, (5), pp. 331–338.

17)

17. Ho, S.L., Niu, S., Fu, W.N.: ‘A novel solidrotor induction motor with skewed slits in radial and axial directions and its performance analysis using finite element method’, IEEE Trans. Appl. Supercond., 2010, 20, (3), pp. 1089–1092.

18)

18. Guo, S., Zhou, L., Yang, T.: ‘An analytical method for determining circuit parameter of a solid rotor induction motor’. Int. Conf. on Electrical Machines and Systems, Sapporo, Japan, 2013, pp. 1–6.

19)

19. Huang, Z., Wang, S., Ni, S.: ‘2D calculation methods of equivalent circuit parameters in smooth solid rotor induction motor’, Proc. CSEE, 2016, 36, (9), pp. 2505–2512.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietrpg.2018.5103
Related content
content/journals/10.1049/ietrpg.2018.5103
pub_keyword,iet_inspecKeyword,pub_concept
6
6