access icon free Calculation methods of equivalent circuit parameters for a dual stator solid rotor axial flux induction motor

This study proposes a novel dual stator solid rotor axial flux induction motor (DSSRAFIM) for flywheel energy storage system and the computational methods for its equivalent circuit parameters. The quasi-one-dimensional theory and the penetration depth method assume that the electromagnetic field distribution in the solid rotor is uniformly distributed, and they are appropriate for optimal design. The multi-layer method takes the non-linear permeability of the solid rotor into account, and it reduces the computational effort by simplifying the complicated computation into a transfer matrix. The two-dimensional finite element method and the three-dimensional finite element method can provide very accurate results, but they spend a large amount of computational effort. All these methods are improved, so that they are applicable to the DSSRAFIM. Also, these methods are verified by experimental test.

Inspec keywords: electromagnetic fields; matrix algebra; rotors; induction motors; stators; finite element analysis; equivalent circuits; flywheels

Other keywords: DSSRAFIM; transfer matrix; quasione-dimensional theory; flywheel energy storage system; equivalent circuit parameters; electromagnetic field distribution; two-dimensional finite element method; computational methods; novel dual stator solid rotor axial flux induction motor; penetration depth method; three-dimensional finite element method; calculation methods; multilayer method

Subjects: Asynchronous machines; Linear algebra (numerical analysis); Finite element analysis; General circuit analysis and synthesis methods; Other energy storage

References

    1. 1)
      • 12. Sarma, M.: ‘Current-density distribution in solid-rotor induction motor’, IEEE Trans. Magn., 1979, 15, (6), pp. 14731475.
    2. 2)
      • 2. Gieras, J.F., Saari, J.: ‘Performance calculation for a high-speed solid-rotor induction motor’, IEEE Trans. Ind. Electron., 2012, 59, (6), pp. 26892700.
    3. 3)
      • 11. Yamazaki, K.: ‘Comparison of induction motor characteristics calculated from electromagnetic field and equivalent circuit determined by 3D FEM’, IEEE Trans. Magn., 2002, 36, (4), pp. 18811885.
    4. 4)
      • 8. Zhang, C., Tseng, K. J.: ‘A novel flywheel energy storage system with partially-self-bearing flywheel-rotor’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 477487.
    5. 5)
      • 10. Williamson, S, Robinson, M.J.: ‘Calculation of cage induction motor equivalent circuit parameters using finite elements’, IEE Proc. B, Electr. Power Appl., 1991, 138, (5), pp. 264276.
    6. 6)
      • 1. Amiryar, M., Pullen, K.: ‘A review of flywheel energy storage system technologies and their applications’, Appl. Sci., 2017, 7, (3), p. 286.
    7. 7)
      • 7. Nguyen, Q.D., Ueno, S.: ‘Modeling and control of salient-pole permanent magnet axial-gap self-bearing motor’, IEEE/ASME Trans. Mechatronics, 2011, 16, (3), pp. 518526.
    8. 8)
      • 18. Guo, S., Zhou, L., Yang, T.: ‘An analytical method for determining circuit parameter of a solid rotor induction motor’. Int. Conf. on Electrical Machines and Systems, Sapporo, Japan, 2013, pp. 16.
    9. 9)
      • 6. Nguyen, Q.D., Ueno, S.: ‘Analysis and control of nonsalient permanent magnet axial gap self-bearing motor’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 26442652.
    10. 10)
      • 3. Pyrhonen, J., Nerg, J., Kurronen, P., et al: ‘High-speed high-output solid-rotor induction-motor technology for gas compression’, IEEE Trans. Ind. Electron., 2009, 57, (1), pp. 272280.
    11. 11)
      • 15. Tang, X., Ning, Y., Fu, F.: ‘Solid rotor induction motor and its application’ (China Machine Press, Beijing, China, 1991).
    12. 12)
      • 5. Wei, Q., Yu, F., Li, S.: ‘Analysis on electromagnetic field of an axial-flux solid aluminum rotor induction motor’. Int. Conf. on Electrical Machines and Systems, Beijing, China, 2011, pp. 14.
    13. 13)
      • 4. Valtonen, M.S.M., Parviainen, D.S.A., Pyrhonen, J.: ‘Electromagnetic field analysis of 3D structure of axial-flux solid-rotor induction motor’. Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion, Taormina, Italy, 2006, pp. 174178.
    14. 14)
      • 17. Ho, S.L., Niu, S., Fu, W.N.: ‘A novel solid-rotor induction motor with skewed slits in radial and axial directions and its performance analysis using finite element method’, IEEE Trans. Appl. Supercond., 2010, 20, (3), pp. 10891092.
    15. 15)
      • 13. Tiegna, H., Bellara, A., Amara, Y., et al: ‘Analytical modeling of the open-circuit magnetic field in axial flux permanent-magnet machines with semi-closed slots’, IEEE Trans. Magn., 2012, 48, (3), pp. 12121226.
    16. 16)
      • 14. Nasar, S.A., BoIdea, I.: ‘Linear motion electric machines’ (A Wiley-Interscience Publication, John Wiley and Sons, New York, NY, USA, 1976).
    17. 17)
      • 9. Lin, F.J, Chen, S.Y., Huang, M.S.: ‘Tracking control of thrust active magnetic bearing system via hermite polynomial-based recurrent neural network’, IET Electr. Power Appl., 2010, 4, (9), pp. 701714.
    18. 18)
      • 19. Huang, Z., Wang, S., Ni, S.: ‘2D calculation methods of equivalent circuit parameters in smooth solid rotor induction motor’, Proc. CSEE, 2016, 36, (9), pp. 25052512.
    19. 19)
      • 16. Chalmers, B.J., Hamdi, E.S.: ‘Multi-layer analysis of composite-rotor induction motor’, Electr. Mach. Power Syst., 1982, 7, (5), pp. 331338.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5103
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5103
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading