access icon free SMES based a new PID controller for frequency stability of a real hybrid power system considering high wind power penetration

This study proposes a coordination of load frequency control (LFC) and superconducting magnetic energy storage (SMES) technology (i.e. auxiliary LFC) using a new optimal PID controller-based moth swarm algorithm (MSA) in Egyptian Power System (EPS) considering high wind power penetration (HWPP) (as a future planning of the EPS). This strategy is proposed for compensating the EPS frequency deviation, preventing the conventional generators from exceeding their power ratings during load disturbances, and mitigating the power fluctuations from wind power plants. To prove the effectiveness of the proposed coordinated control strategy, the EPS considering HWPP was tested by the MATLAB/SIMULINK simulation. The convention generation system of the EPS is decomposed into three dynamics subsystems; hydro, reheat and non-reheat power plants. Moreover, the physical constraints of the governors and turbines such as generation rate constraints of power plants and speed governor dead band (i.e. backlash) are taking into consideration. The results reveal the superior robustness of the proposed coordination against all scenarios of different load profiles, and system uncertainties in the EPS considering HWPP. Moreover, the results have been confirmed by comparing it with both; the optimal LFC with/without the effect of conventional SMES, which without modifying the input control signal.

Inspec keywords: hydroelectric generators; frequency control; hybrid power systems; wind power plants; frequency stability; three-term control; superconducting magnet energy storage; optimisation; wind turbines; load regulation; hydroelectric power stations; power generation control

Other keywords: Matlab-Simulink simulation; power fluctuation mitigation; physical constraints; generation rate constraints; dynamics subsystems; load frequency control; hydropower plants; high wind power penetration; power plants; speed governor dead band; HWPP; LFC coordination; load disturbances; system uncertainties; SMES; real hybrid power system; convention generation system; nonreheat power plants; EPS frequency deviation compensation; superconducting magnetic energy storage technology; MSA; optimal PID controller-based moth swarm algorithm; reheat power plants; turbines; frequency stability; Egyptian power system; power ratings; coordinated control strategy

Subjects: Optimisation techniques; Optimisation techniques; Wind power plants; Other energy storage; Control of electric power systems; a.c. machines; Superconducting coils and magnets; Power system control; Frequency control; Hydroelectric power stations and plants

References

    1. 1)
      • 19. Mohamed, T., Morel, J., Bevrani, H., et al: ‘Model predictive based load frequency control-design concerning wind turbines’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 859867.
    2. 2)
      • 28. Egyptian Electricity Holding Company, Annual Report, 2016. Available at http://www.eehc.gov.eg/eehcportal/YearlyReports.aspx.
    3. 3)
      • 5. Holdsworth, L., Ekanayake, J., Jenkins, N.: ‘Power system frequency response from fixed speed and doubly-fed induction generator based wind turbine’, Wind Energy, 2004, 7, (1), pp. 2135.
    4. 4)
      • 10. Shabib, G., Abd-Elhameed, E., Magdy, G.: ‘Plant input mapping digital redesign of a PID controller for a power system damping’. 3rd Int. Conf. on Energy Systems and Technologies, Cairo, Egypt, 16–19 February 2015, pp. 171186.
    5. 5)
      • 21. Golkhandan, R., Aghaebrahimi, M., Farshad, M.: ‘Control strategies for enhancing frequency stability by DFIGs in a power system with high percentage of wind power penetration’, Appl. Sci., 2017, 7, (11), pp. 115.
    6. 6)
      • 4. Gozde, H., Taplamacioglu, M.C.: ‘Automatic generation control application with craziness based particle swarm optimization in a thermal power system’, Electr. Power Energy Syst., 2011, 33, (1), pp. 816.
    7. 7)
      • 22. Hasanien, H.M., El-fergany, A.A.: ‘Symbiotic organisms search algorithm for automatic generation control of interconnected power systems including wind farms’, IET Gener. Transm. Distrib., 2017, 11, (7), pp. 16921700.
    8. 8)
      • 16. Farahani, M., Ganjefar, S., Alizadeh, M.: ‘PID controller adjustment using chaotic optimisation algorithm for multi-area load frequency control’, IET Control Theory Appl., 2012, 6, (13), pp. 19841992.
    9. 9)
      • 9. Mohamed, T., Bevrani, H., Hassan, A., et al: ‘Decentralized model predictive based load frequency control in an interconnected power system’, 2011, 52, (1), pp. 12081214.
    10. 10)
      • 35. Bevrani, H.: ‘Robust power system frequency control’ (Springer, New York, 2014, 2nd edn. 2014).
    11. 11)
      • 34. Mir, A., Senroy, N.: ‘Adaptive model predictive control scheme for application of SMES for load frequency control’, IEEE Trans. Power Syst., 2017, PP, (99), pp. 19.
    12. 12)
      • 20. Bhatt, P., Roy, R., Ghoshal, S.: ‘Dynamic participation of doubly fed induction generator in automatic generation control’, Renew. Energy, 2011, 36, (1), pp. 12031213.
    13. 13)
      • 2. Kundur, P.: ‘Power system stability, and control’ (Tata McGraw-Hill Education, New Delhi, 2008, 5th edn. 2008).
    14. 14)
      • 29. Yassin, K., Abd-Raboh, E., Al-Domany, M.: ‘Fast power system restoration via load shedding practices in Egyptian power system’, Mansoura Eng. J., 1992, 17, (1), pp. 120.
    15. 15)
      • 30. Kerdphol, T., Rahman, F., Mitani, Y., et al: ‘Virtual inertia control based model predictive control for microgrid frequency stabilization considering high renewable energy integration’, Sustainability, 2017, 9, (1), pp. 121.
    16. 16)
      • 23. Pingping, X., Yinhong, L., Lin, Z., et al: ‘Supplementary automatic generation control using controllable energy storage in electric vehicle battery swapping stations’, IET Gener. Transm. Distrib., 2016, 10, (4), pp. 11071116.
    17. 17)
      • 18. Rout, U.K., Sahu, R.K., Panda, S.: ‘Design and analysis of differential evolution algorithm based automatic generation control for interconnected power system’, Ain Shams Eng. J., 2013, 4, (3), pp. 409421.
    18. 18)
      • 17. Tammam, M., Aboelela, M., Moustafa, M., et al: ‘Fuzzy like PID controller tuning by multi-objective genetic algorithm for load frequency control in nonlinear electric power systems’, Int. J. Adv. Eng. Technol., 2012, 12, (12), pp. 572583.
    19. 19)
      • 3. Kouba, N., Menaa, M., Hasni, M., et al: ‘Load frequency control in multi-area power system based on fuzzy logic-PID controller’. IEEE Int. Conf. on Smart Energy Grid Engineering SEGE, Oshawa, Canada, 2015, pp. 16.
    20. 20)
      • 36. Hasanien, H.M.: ‘Whale optimisation algorithm for automatic generation control of interconnected moder power systems including renewable energy sources’, IET Gener. Transm. Distrib., 2017, 12, (3), pp. 607614.
    21. 21)
      • 26. Mohamed, A.A., Mohamed, Y.S., El-Gaafary, A.A.M., et al: ‘Optimal power flow using moth swarm algorithm’, Electr. Power Syst. Res., 2017, 142, (1), pp. 190206.
    22. 22)
      • 15. Kouba, N., Menaa, M., Boudour, M.: ‘Automatic generation control application with craziness based particle swarm optimization in a thermal power system’, Int. J. Electr. Power Energy Syst., 2010, 33, (1), pp. 816.
    23. 23)
      • 27. Mohamed, E., Mohamed, A., Kerdphol, T., et al: ‘Optimization of reactive compensation in distribution networks based on moth swarm intelligence for multi-load levels’, Int. Rev. Electr. Eng., 2017, 12, (4), pp. 342352.
    24. 24)
      • 7. Ali, R., Mohamed, T., Qudaih, Y., et al: ‘A new load frequency control approach in an isolated small power system using coefficient diagram method’, Int. J. Electr. Power Energy Syst., 2014, 56, (1), pp. 110116.
    25. 25)
      • 32. Padhan, S., Sahu, R., Panda, S.: ‘Automatic generation control with thyristor controlled series compensator including superconducting magnetic energy storage units’, Ain Shams Eng. J., 2014, 5, (759), pp. 759774.
    26. 26)
      • 1. Ramesh, N., Arulmozhivarman, P.: ‘Wind energy conversion system – a technical review’, J. Eng. Sci. Technol., 2013, 8, (4), pp. 493507.
    27. 27)
      • 25. Bhatt, P., Roy, R., Ghoshal, S.: ‘Dynamic contribution of DFIG along with SMES for load frequency control of interconnected restructured power system’. 10th Int. Conf. on Environment and Electrical Engineering, Rome, Italy, May 2011, pp. 15.
    28. 28)
      • 12. Aoki, M.: ‘Control of large-scale dynamic systems by aggregation’, IEEE Trans. Autom. Control, 1968, 13, (3), pp. 246253.
    29. 29)
      • 6. Yousef, H., AL-Kharusi, K., Albadi, M., et al: ‘Load frequency control of a multi-area power system: an adaptive fuzzy logic approach’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 18221830.
    30. 30)
      • 24. El-Saady, G., Mobarak, Y., Wahab, M., et al: ‘A new robust technique LFC of multi-area power system using SMES’, Int. J. Control Autom. Syst., 2013, 1, (2), pp. 5660.
    31. 31)
      • 8. Garasi, P., Qudaih, Y., Ali, R., et al: ‘Coefficient diagram method based load frequency control for a modern power system’, J. Electron. Sci. Technol., 2014, 12, (3), pp. 270276.
    32. 32)
      • 31. Li, X., Hui, D., Lai, X., et al: ‘Power quality control in wind/fuel cell/battery/hydrogen electrolyzer hybrid micro-grid power system’, in Ivanov, O. (Eds.): ‘Applications and Experiences of Quality Control’ (InTech, 2011, 1st edn.).
    33. 33)
      • 13. Moon, Y.H., Ryu, H.S., Kim, B., et al: ‘Optimal tracking approach to load frequency control in power systems’. IEEE Conf., Power Engineering Society Winter Meeting, Singapore, 23–27 January 2000, pp. 13711376.
    34. 34)
      • 14. Feliachi, A.: ‘Optimal decentralized load frequency control’, IEEE Power Eng. Rev., 1987, 6, (5), pp. 379386.
    35. 35)
      • 11. Topno, P., Chanana, S.: ‘Load frequency control of a two-area multi-source power system using a tilt integral derivative controller’, J. Vib. Control, 2016, 24, (1), pp. 116.
    36. 36)
      • 33. Aly, M., Mohamed, E., Salama, H., et al: ‘A developed voltage control strategy for unbalanced distribution system during wind speed gusts using SMES’, Energy Procedia, 2016, 100, (1), pp. 271279.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5096
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5096
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading