Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Exploring wind power prognosis data on Nord Pool: the case of Sweden and Denmark

A good understanding of forecast errors is imperative for greater penetration of wind power, as it can facilitate planning and operation tasks. Oftentimes, public data is used for system studies without questioning or verifying its origin. In this study, the authors propose a methodology to verify public data with the example of wind power prognosis published by Nord Pool. They focus on Swedish data and identify a significant bias that increases over the forecast horizon. In order to explore the origin of this bias, they first compare against Danish forecast and then describe the underlying structure behind the submission processes of this data. Based on the balance settlement structure, they reveal that Swedish ‘wind power prognoses’ on Nord Pool are in fact rather wind production plans than technical forecasts. They conclude with the recommendation for improved communication and transparency with respect to the terminology of public data on Nord Pool. They stress the importance for the research community to check publicly available input data before further use. Furthermore, the root-mean-square error and the spatio-temporal correlation between the errors in the bidding areas at different horizons are presented. Even with this compromised data, a stronger correlation is identified in neighbouring areas.

References

    1. 1)
      • 29. European Wind Energy Association: ‘Wind energy scenarios for 2030’. Available at http://www.ewea.org/, accessed May 2018.
    2. 2)
      • 37. Miettinen, J., Holttinen, H., Giebel, G.: ‘Nordic wind power forecast errors: benefits of aggregation and impact to balancing market volumes’. 13th Workshop on Large Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Farms, London, UK, October 2014, pp. 17.
    3. 3)
      • 2. Lew, D., Brinkman, G., Ibanez, E., et al: ‘The western wind and solar integration study phase 2’, NREL, 2013. Available at http://www.nrel.gov/docs/fy13osti/55588.pdf.
    4. 4)
      • 31. International Renewable Energy Agency: ‘IRENA Resource’. Available at http://resourceirena.irena.org/gateway/countrySearch/, accessed May 2018.
    5. 5)
      • 12. Giebel, G., Brownsword, R., Kariniotakis, G., et al: ‘The state-of-the-art in short-term prediction of wind power: a literature overview’ (DTU Orbit, Denmark, 2011, 2nd edn.), pp. 1111.
    6. 6)
      • 39. eSett Oy Settlement Service: ‘eSett Handbook’ (eSett Oy, 2018). Available at https://www.esett.com/handbook/.
    7. 7)
      • 10. Forbes, K., Zampelli, E.: ‘The accuracy of the load and wind energy forecasts in Scandinavia and the prospects for improvement’. Conf. of the Swedish Association for Energy Economics (SAEE), Luleå, Sweden, August 2016, pp. 137. Available at https://www.slideshare.net/kevin_f_forbes/saee-presentation-august-24-2016-v2.
    8. 8)
      • 16. eSett Oy Settlement Service: ‘Nordic imbalance settlement’. Available at https://www.esett.com/, accessed April 2018.
    9. 9)
      • 6. Nilsson, A., Brandt, N.: ‘Proposing an hourly dynamic wind signal as an environmental incentive for demand response’, Adv. New Trends Environ. Inf., 2017, 1, (2), pp. 153164.
    10. 10)
      • 1. GE Energy: ‘Western wind and solar integration study’. National Renewable Energy Laboratory Tech. Rep. SR-550-47434 NREL, 2010. Available at http://www.nrel.gov/docs/fy10osti/47434.pdf.
    11. 11)
      • 23. Olauson, J., Ayob, M.N., Bergkvist, M., et al: ‘Net load variability in Nordic countries with a highly or fully renewable power system’, Nat. Energy, 2016, 1, pp. 18. Available at https://www.nature.com/articles/nenergy2016175.
    12. 12)
      • 17. Diebold, F.X., Mariano, R.S.: ‘Comparing predictive accuracy’, J. Bus. Econ. Stat., 1995, 13, (3), pp. 253263. Available at http://www.tandfonline.com/doi/abs/10.1080/07350015.1995.10524599.
    13. 13)
      • 27. European Commission: ‘EUROPE 2020 – a strategy for smart, sustainable and inclusive growth (annex 1 – Europe 2020: an overview)’. Available at http://eur-lex.europa.eu/, accessed Apr 2018.
    14. 14)
      • 19. Gneiting, T., Raftery, A.: ‘Strictly proper scoring rules, prediction, and estimation’, J. Am. Stat. Assoc., 2007, 477, (102), pp. 359378. Available at http://www.tandfonline.com/doi/abs/10.1198/016214506000001437.
    15. 15)
      • 9. Hodge, B.-M., Lew, D., Milligan, M., et al: ‘Wind power forecasting error distributions: an international comparison’. 11th Workshop on Large Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Farms, Lisbon, Portugal, November 2012, pp. 17.
    16. 16)
      • 11. Monteiro, C., Bessa, R., Miranda, V., et al: ‘Wind power forecasting: state-of-the-art 2009’ (Argonne National Laboratory, Argonne, IL, USA, 2009).
    17. 17)
      • 15. Holttinen, H., Miettinen, J., Sillanpää, S.: ‘Wind power forecasting accuracy and uncertainty in Finland’ (VTT, Finland, 2013), pp. 160.
    18. 18)
      • 33. Swedish National Grid Svenska kraftnät: ‘Network development plan 2015’. Available at https://www.svk.se/en, accessed May 2018.
    19. 19)
      • 34. Danish Transmission System Operator: ‘Energinet.dk homepage’. Available at https://en.energinet.dk/, accessed May 2018.
    20. 20)
      • 7. ‘ENTSO-E Transparency Platform’. Available at https://transparency.entsoe.eu/, accessed October 2018.
    21. 21)
      • 22. Matevosyan, J., Söder, L.: ‘Minimization of imbalance cost trading wind power on the short-term power market’, IEEE Trans. Power Syst., 2006, 3, (21), pp. 13961404. Available at http://ieeexplore.ieee.org/document/1664977/.
    22. 22)
      • 28. European Commission: ‘Eurostat – Europe 2020 Targets’. Available at http://ec.europa.eu/eurostat/documents/4411192/4411431/Europe_2020_Targets.pdf, accessed May 2018.
    23. 23)
      • 38. Pinson, P.: ‘Estimation of the uncertainty in wind power forecasting’. PhD thesis, Univ. Ecole des Mines de Paris, Paris, France, 2006.
    24. 24)
      • 44. Lang, S., McKeogh, E.: ‘Verification of wind power forecasts provided in real-time to the Irish transmission system operator’. IEEE PES General Meeting, Minneapolis, Minnesota, USA, July 2010, pp. 16. Available at http://ieeexplore.ieee.org/document/5590032/.
    25. 25)
      • 14. Tastu, J., Pinson, P., Kotwa, E., et al: ‘Spatio-temporal analysis and modeling of short-term wind power forecast errors’, Wind Energy, 2011, 1, (14), pp. 4360.
    26. 26)
      • 4. New England Independent System Operator: ‘New England wind integration study’ (ISONE, 2010). Available at http://www.isone.com/committees/comm_wkgrps/prtcpnts_comm/pac/reports/2010/newis_report.pdf.
    27. 27)
      • 40. Nordic Energy Regulators: ‘Development of a common Nordic balance settlement’ (NordREG c/o Energimarknadsinspektionen, 2006). Available at http://www.nordicenergyregulators.org/wp-content/uploads/2013/02/Common_Nordic_balance_settlement.pdf.
    28. 28)
      • 21. Bessa, R.J., Miranda, V., Botterud, A., et al: ‘Good’ or ‘bad’ wind power forecasts: a relative concept’, Wind Energy, 2011, 14, (5), pp. 625636. Available at http://doi.wiley.com/10.1002/we.444.
    29. 29)
      • 3. Enernex: ‘Eastern wind integration and transmission study’, Tech. Rep. SR-5500-47078’ (NREL, 2011). Available at http://www.nrel.gov/docs/fy11osti/47078.pdf.
    30. 30)
      • 25. The Wind Power: ‘Databases and reports’. Available at https://www.thewindpower.net, accessed May 2018.
    31. 31)
      • 30. Global Wind Energy Council: ‘GWEC interactive map’. Available at http://gwec.net/global-figures/interactive-map/, accessed May 2018.
    32. 32)
      • 36. Norwegian Transmission System Operator ‘Statkraft homepage’. Available at https://www.statkraft.com/, accessed May 2018.
    33. 33)
      • 42. Enfor: ‘enfor.eu’. Available at http://enfor.eu/http://enfor.eu/, accessed October 2018.
    34. 34)
      • 45. ECMWF: ‘ERA5 data documentation’. Available at https://software.ecmwf.int/wiki/display/CKB/ERA5+data+documentation, accessed July 2017.
    35. 35)
      • 24. Energistyrelsen: ‘Overview of the energy sector (in Danish)’. Available at https://ens.dk/service/statistik-data-noegletal-og-kort/data-oversigt-over-energisektoren, accessed May 2018.
    36. 36)
      • 8. ‘Nord Pool – Historical Market Data’. Available at http://www.nordpoolspot.com/historical-market-data/, accessed October 2018.
    37. 37)
      • 5. California Independent System Operator: ‘Integration of renewable resources: operational requirements and generation fleet capability at 20% RPS’ (CAISO, 2011).
    38. 38)
      • 26. Estonian Wind Power Association: ‘Tuuleenergia – installed capacity in Estonia’. Available at http://www.tuuleenergia.ee/en/windpower-101, accessed May 2018.
    39. 39)
      • 41. VITEC Software Group AB ‘Aiolos’. Available at https://www.vitecsoftware.com/en/product-areas/energy/products/aiolos-forecast-studio/, accessed October 2018.
    40. 40)
      • 18. Gneiting, T.: ‘Making and evaluating point forecasts’, J. Am. Stat. Assoc., 2011, 106, (494), pp. 746762. Available at https://EconPapers.repec.org/RePEc:bes:jnlasa:v:106:i:494:y:2011:p:746-762.
    41. 41)
      • 13. Dobschinski, J.: ‘How good is my forecast? Comparability of wind power forecast erros’. 13th Workshop on Large Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Farms, London, UK, October 2014, pp. 17.
    42. 42)
      • 43. Svenska Kraftnät: ‘Nätområden.se (in Swedish)’. Available at https://www.natomraden.se/, accessed May 2018.
    43. 43)
      • 35. Fichaux, N., Singh, G., Lee, W.-J., et al: ‘30 years of policies for wind energy: lessons from 12 Markets(International Renewable Energy Agency (IRENA), 2013). Available at http://www.irena.org.
    44. 44)
      • 32. Svensk Vindenergi: ‘Statistics and forecast (in Swedish)’. Available at http://www.svenskvindenergi.org, accessed Oct 2018.
    45. 45)
      • 20. Murphy, A., Katz, R., Winkler, R., et al: ‘Repetitive decision making and the value of forecasts in the Cost–loss ratio situation: a dynamic model’, Mon. Weather Rev., 1985, 113, (5), pp. 801813. Available at https://doi.org/10.1175/1520-0493(1985)113<0801:RDMATV>2.0.CO;2.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5086
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5086
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address