http://iet.metastore.ingenta.com
1887

Investigation and damping of low-frequency oscillations of stochastic solar penetrated power system by optimal dual UPFC

Investigation and damping of low-frequency oscillations of stochastic solar penetrated power system by optimal dual UPFC

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Solar power being stochastic and asynchronous in nature, its integration with conventional power generation has so many challenges in damping of low-frequency oscillations. This study presents an investigation of low-frequency oscillation and damping of stochastic solar power integrated power system by a unified power flow controller (UPFC)-based dual optimal controller, which gains are optimised by a novel hybrid particle swarm optimisation and improved grey wolf optimiser. The dual controller simultaneously controls the modulation index of series and phase angle of shunt converters of UPFC, which co-operate with each other, optimising its efficacy and thereby implementing the advantages of both static synchronous series compensator and static synchronous compensator. A detailed Eigen value analysis has been performed with time domain simulations to study the damped oscillatory response of variable and random solar penetration with a power system along with the interaction of solar power with variable synchronous power generations. For a multi-machine system, a multi-input single output dual controller is proposed. A maximum sensor and time delay have been considered to design the controller providing a realistic approach. It is observed that random and heavy solar penetration has a more detrimental effect on system oscillations, which can be damped heavily with the proposed controller, in contrast to particle swarm optimisation, differential evolution, grey wolf optimiser, differential evolution particle swarm optimisation optimised lead-lag and dual controllers.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2018.5066
Loading

Related content

content/journals/10.1049/iet-rpg.2018.5066
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address