Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Shifting air-conditioner load in residential buildings: benefits for low-carbon integrated power grids

This study presents a simulation of low-carbon electricity supply for Australia, contributing new knowledge by demonstrating the benefits of load shifting in residential buildings for downsizing renewable electricity grids comprising wind, hydro, biomass, and solar resources. The load-shifting potential for the whole of Australia is estimated, based on air-conditioner load data and an insulation model for residential buildings. Load shifting is applied to enable transferring residential air-conditioner load from peak to off-peak periods, assuming that air-conditioners can be turned-on a few hours ahead of need, during periods where demand is low and renewable resource availability is high, and turned-off during periods of high demand and low resource availability. Thus, load shifting can effectively reduce installed capacity requirements in renewable electricity grids. For 1 h load shifting of residential air-conditioners, Australian electricity demand can be met at the current reliability standards by 130 GW installed capacity, at cost around 12.5 ¢/kWh, and a capacity factor of 32%. The installed capacity can be further reduced by increasing the number of hours that loads can be shifted. The findings suggest that the application of load shifting in residential buildings can play a significant role for power networks with high renewable energy penetration.

References

    1. 1)
      • 26. Kemp, M., Wexler, J.: ‘Zero carbon Britain 2030: a new energy strategy: the second report of the zero carbon Britain project’ (Centre for Alternative Technology, Wales, 2010).
    2. 2)
      • 15. Rabl, A., Norford, L.K.: ‘Peak load reduction by preconditioning buildings at night’, Int. J. Energy Res., 1991, 15, (9), pp. 781798.
    3. 3)
      • 43. Chu, C.M., Jong, T.L.: ‘A novel direct air-conditioning load control method’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 13561363.
    4. 4)
      • 10. Zarnikau, J.W.: ‘Demand participation in the restructured electric reliability council of Texas market’, Energy, 2010, 35, (4), pp. 15361543.
    5. 5)
      • 27. Lund, H., Mathiesen, B.V.: ‘Energy system analysis of 100% renewable energy systems – the case of Denmark in years 2030 and 2050’, Energy, 2009, 34, (5), pp. 524531.
    6. 6)
      • 6. Riesz, J., Elliston, B.: ‘Research and deployment priorities for renewable technologies: quantifying the importance of various renewable technologies for low cost, high renewable electricity systems in an Australian case study’, Energy Policy, 2016, 98, pp. 298308.
    7. 7)
      • 36. Rajeev, T., Ashok, S.: ‘Dynamic load-shifting program based on a cloud computing framework to support the integration of renewable energy sources’, Appl. Energy, 2015, 146, (Suppl. C), pp. 141149.
    8. 8)
      • 13. Kolokotsa, D.: ‘The role of smart grids in the building sector’, Energy Build., 2016, 116, (Suppl. C), pp. 703708.
    9. 9)
      • 4. Ruppert, M., Hayn, M., Bertsch, V., et al: ‘Impact of residential electricity tariffs with variable energy prices on low voltage grids with photovoltaic generation’, Int. J. Electr. Power Energy Syst., 2016, 79, (Suppl. C), pp. 161171.
    10. 10)
      • 1. Elliston, B., MacGill, I., Diesendorf, M.: ‘Least cost 100% renewable electricity scenarios in the Australian national electricity market’, Energy Policy, 2013, 59, pp. 270282.
    11. 11)
      • 47. Farine, D.R., O'Connell, D.A., Raison, R.J., et al: ‘An assessment of biomass for bioelectricity and biofuel, and for greenhouse gas emission reduction in Australia’, GCB Bioenergy, 2012, 4, (2), pp. 148175.
    12. 12)
      • 38. Wimmler, C., Hejazi, G., de Oliveira Fernandes, E., et al: ‘Impacts of load shifting on renewable energy integration’, Energy Procedia, 2017, 107, (Suppl. C), pp. 248252.
    13. 13)
      • 57. Strengers, Y.: ‘Air-conditioning Australian households: the impact of dynamic peak pricing’, Energy Policy, 2010, 38, (11), pp. 73127322.
    14. 14)
      • 55. Hasnain, S.M.: ‘Review on sustainable thermal energy storage technologies, part II: cool thermal storage’, Energy Convers. Manag., 1998, 39, (11), pp. 11391153.
    15. 15)
      • 11. Finn, P., Fitzpatrick, C., Connolly, D., et al: ‘Facilitation of renewable electricity using price based appliance control in Ireland's electricity market’, Energy, 2011, 36, (5), pp. 29522960.
    16. 16)
      • 9. Infield, D.G., Short, J., Horne, C., et al: ‘Potential for domestic dynamic demand-side management in the UK’. IEEE Power Engineering Society General Meeting, Tampa, 2007, pp. 16.
    17. 17)
      • 28. Faulstich, M., Holm-Müller, K., Bradke, H., et al: ‘Impulse für eine integrative Umweltpolitik’ (Erich Schmidt Verlag, Berlin, 2016).
    18. 18)
      • 16. Aghaei, J., Alizadeh, M.-I.: ‘Demand response in smart electricity grids equipped with renewable energy sources: a review’, Renew. Sustain. Energy Rev., 2013, 18, pp. 6472.
    19. 19)
      • 59. ‘Cost benefit analysis of smart metering and direct load control: Overview Report for Consultation’, NERA Economic Consulting, prepared for the Ministerial Council on Energy Smart Meter Working Group, Sydney, NSW, 2008.
    20. 20)
      • 51. Department of Industry: ‘Smart-grid smart-city customer trial data’.
    21. 21)
      • 46. Crawford, D., Jovanovic, T., O'Connor, M., et al: ‘AEMO 100% renewable energy study. Potential for electricity generation in Australia from biomass in 2010, 2030 and 2050’, September 2012.
    22. 22)
      • 33. Huva, R., Dargaville, R., Caine, S.: ‘Prototype large-scale renewable energy system optimisation for Victoria, Australia’, Energy, 2012, 41, (1), pp. 326334.
    23. 23)
      • 39. Logenthiran, T., Srinivasan, D., Shun, T.Z.: ‘Demand side management in smart grid using heuristic optimization’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 12441252.
    24. 24)
      • 31. Jacobson, M.Z., Delucchi, M.A.: ‘Providing all global energy with wind, water, and solar power, part I: technologies, energy resources, quantities and areas of infrastructure, and materials’, Energy Policy, 2011, 39, (3), pp. 11541169.
    25. 25)
      • 30. Sørensen, B.: ‘A renewable energy and hydrogen scenario for Northern Europe’, Int. J. Energy Res., 2008, 32, (5), pp. 471500.
    26. 26)
      • 60. ‘Cost Benefit Analysis of Smart Metering and Direct Load Control: Phase 1 Overview Report’, NERA Economic Consulting, prepared for the Ministerial Council on Energy Smart Meter Working Group, Sydney, NSW, 2007.
    27. 27)
      • 37. Stötzer, M., Hauer, I., Richter, M., et al: ‘Potential of demand side integration to maximize use of renewable energy sources in Germany’, Appl. Energy, 2015, 146, (Suppl. C), pp. 344352.
    28. 28)
      • 35. Turner, G.M., Elliston, B., Diesendorf, M.: ‘Impacts on the biophysical economy and environment of a transition to 100% renewable electricity in Australia’, Energy Policy, 2013, 54, pp. 288299.
    29. 29)
      • 34. Vithayasrichareon, P., MacGill, I.F.: ‘Generation portfolio analysis for low-carbon future electricity industries with high wind power penetrations’. IEEE Trondheim PowerTech, Trondheim, 2011, pp. 16.
    30. 30)
      • 45. Huang, J.: ‘Dynamic downscaling of Australian climate for solar energy resource assessment using CCCAM’. Presented at the AMOS National Conf., Hobart, Australia, 2014.
    31. 31)
      • 3. Sorensen, B., Meibom, P.: ‘A global renewable energy scenario’, Int. J. Glob. Energy Issues, 2000, 13, (1/2/3), p. 196.
    32. 32)
      • 8. Bayod-Rújula, A.A.: ‘Future development of the electricity systems with distributed generation’, Energy, 2009, 34, (3), pp. 377383.
    33. 33)
      • 2. Lu, B., Blakers, A., Stocks, M.: ‘90–100% renewable electricity for the south west interconnected system of Western Australia’, Energy, 2017, 122, pp. 663674.
    34. 34)
      • 50. Reddy, T.A., Norford, L.K., Kempton, W.: ‘Shaving residential air-conditioner electricity peaks by intelligent use of the building thermal mass’, Energy, 1991, 16, (7), pp. 10011010.
    35. 35)
      • 42. Giorgio, A.D., Pimpinella, L.: ‘An event driven smart home controller enabling consumer economic saving and automated demand side management’, Appl. Energy, 2012, 96, pp. 92103.
    36. 36)
      • 32. Lenzen, M., McBain, B., Trainer, T., et al: ‘Simulating low-carbon electricity supply for Australia’, Appl. Energy, 2016, 179, pp. 553564.
    37. 37)
      • 53. Smith, R., Meng, K., Dong, Z., et al: ‘Demand response: a strategy to address residential air-conditioning peak load in Australia’, J. Mod. Power Syst. Clean Energy, 2013, 1, (3), pp. 223230.
    38. 38)
      • 23. Krajačić, G., Duić, N., da Graça Carvalho, M.: ‘How to achieve a 100% RES electricity supply for Portugal?’, Appl. Energy, 2011, 88, (2), pp. 508517.
    39. 39)
      • 7. Roscoe, A.J., Ault, G.: ‘Supporting high penetrations of renewable generation via implementation of real-time electricity pricing and demand response’, IET Renew. Power Gener., 2010, 4, (4), pp. 369382.
    40. 40)
      • 54. Al-Abidi, A.A., Bin Mat, S., Sopian, K., et al: ‘Review of thermal energy storage for air conditioning systems’, Renew. Sustain. Energy Rev., 2012, 16, (8), pp. 58025819.
    41. 41)
      • 41. Li, C., Yu, X., Yu, W., et al: ‘Efficient computation for sparse load shifting in demand side management’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 250261.
    42. 42)
      • 44. AEMO: ‘100 per cent renewables study – modelling outcomes’. Australian Energy Market Operator, 2013.
    43. 43)
      • 24. Connolly, D., Lund, H., Mathiesen, B.V., et al: ‘The first step towards a 100% renewable energy-system for Ireland’, Appl. Energy, 2011, 88, (2), pp. 502507.
    44. 44)
      • 48. Your home: ‘Australia's guide to environmentally sustainable homes’ (Department of Industry, Canberra, 2013).
    45. 45)
      • 12. Strbac, G.: ‘Demand side management: benefits and challenges’, Energy Policy, 2008, 36, (12), pp. 44194426.
    46. 46)
      • 21. Mason, I.G., Page, S.C., Williamson, A.G.: ‘A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources’, Energy Policy, 2010, 38, (8), pp. 39733984.
    47. 47)
      • 40. Bozchalui, M.C., Hashmi, S.A., Hassen, H., et al: ‘Optimal operation of residential energy hubs in smart grids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 17551766.
    48. 48)
      • 29. Basulto, D.: ‘Roadmap 2050: a practical guide to a prosperous, low-carbon Europe’, ArchDaily, 13 April 2010. [Online]. Available at http://www.archdaily.com/56229/roadmap-2050-a-practical-guide-to-a-prosperous-low-carbon-europe/, accessed 3 March 2017.
    49. 49)
      • 14. Favre, B., Peuportier, B.: ‘Application of dynamic programming to study load shifting in buildings’, Energy Build., 2014, 82, (Suppl. C), pp. 5764.
    50. 50)
      • 22. Akuru, U.B., Onukwube, I.E., Okoro, O.I., et al: ‘Towards 100% renewable energy in Nigeria’, Renew. Sustain. Energy Rev., 2017, 71, (Suppl. C), pp. 943953.
    51. 51)
      • 49. ‘Insulation types – fact sheet’, Sustainable Energy Authority Victoria, July 2013.
    52. 52)
      • 52. Department of the Environment, Water, Heritage and the Arts: ‘Report: energy use in the Australian residential sector 1986–2020’, Energy Rating, 21 October 2015. [Online]. Available at http://www.energyrating.gov.au/document/report-energy-use-australian-residential-sector-1986--2020, accessed 13 April 2017.
    53. 53)
      • 18. Newsham, G.R., Birt, B.J., Rowlands, I.H.: ‘A comparison of four methods to evaluate the effect of a utility residential air-conditioner load control program on peak electricity use’, Energy Policy, 2011, 39, (10), pp. 63766389.
    54. 54)
      • 19. Elliston, B., Diesendorf, M., MacGill, I.: ‘Simulations of scenarios with 100% renewable electricity in the Australian national electricity market’, Energy Policy, 2012, 45, pp. 606613.
    55. 55)
      • 25. Ćosić, B., Krajačić, G., Duić, N.: ‘A 100% renewable energy system in the year 2050: the case of Macedonia’, Energy, 2012, 48, (1), pp. 8087.
    56. 56)
      • 58. ‘Cost benefit analysis of smart metering and direct load control. Work Stream 4: Consumer impacts. Phase 2 Consultation Report’, NERA Economic Consulting, prepared for the Ministerial Council on Energy Smart Meter Working Group, Sydney, NSW, 2008.
    57. 57)
      • 5. Papaioannou, I.T., Purvins, A., Tzimas, E.: ‘Demand shifting analysis at high penetration of distributed generation in low voltage grids’, Int. J. Electr. Power Energy Syst., 2013, 44, (1), pp. 540546.
    58. 58)
      • 17. Moholkar, A., Klinkhachorn, P., Feliachi, A.: ‘Effects of dynamic pricing on residential electricity bill’. IEEE PES Power Systems Conf. and Exposition, New York, 2004, vol. 2, pp. 10301035.
    59. 59)
      • 20. Keech, R.: ‘The zero carbon Australia project’. Beyond Zero Emissions, 2 July2009.
    60. 60)
      • 56. Callaway, D.S., Hiskens, I.A.: ‘Achieving controllability of electric loads’, Proc. IEEE, 2011, 99, (1), pp. 184199.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0859
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0859
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address