http://iet.metastore.ingenta.com
1887

Power production prediction of wind turbines using a fusion of MLP and ANFIS networks

Power production prediction of wind turbines using a fusion of MLP and ANFIS networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Access to accurate power production prediction of a wind turbine in future hours enables operators to detect possible underperformance and anomalies in advance. This may enable more proactive and strategic operations optimisation. This study examines common Supervisory Control And Data Acquisition (SCADA) data over a period of 20 months for 21 pitch regulated 2.3 MW turbines. In this study, an algorithm is proposed to impute values of data that are missing, out-of-range, or outliers. It is shown that an appropriate combination of a decision tree and mean value for imputation can improve the data analysis and prediction performance by the creation of a smoother dataset. In addition, principal component analysis is employed to extract parameters with power production influence based on all available signals in the SCADA data. Then, a new data fusion technique is applied, combining dynamic multilayer perceptron (MLP) and adaptive neuro-fuzzy inference system (ANFIS) networks to predict future performance of wind turbines. This prediction is made on a scale of one-hour intervals. This novel combination of feature extraction, imputation, and MLP/ANFIS fusion performs well with favourably low prediction error levels. Thus, such an approach may be a valuable tool for turbine power production prediction.

References

    1. 1)
      • 1. Marathe, N., Swift, A., Hirth, B., et al: ‘Characterizing power performance and wake of a wind turbine under yaw and blade pitch’, Wind Energy, 2016, 19, (5), pp. 963978.
    2. 2)
      • 2. Heng, A., Zhang, S., Tan, A.C., et al: ‘Rotating machinery prognostics: state of the art, challenges and opportunities’, Mech. Syst. Signal Process., 2009, 23, (3), pp. 724739.
    3. 3)
      • 3. Malhi, A., Yan, R., Gao, R.X.: ‘Prognosis of defect propagation based on recurrent neural networks’, IEEE Trans. Instrum. Meas., 2011, 60, (3), pp. 703711.
    4. 4)
      • 4. Li, J., Li, R., Gao, Y., et al: ‘Aerodynamic optimization of wind turbine airfoils using response surface techniques’, Proc. Inst. Mech. Eng. A, J. Power Energy, 2010, 224, (6), pp. 827838.
    5. 5)
      • 5. Ju, Y., Zhang, C.: ‘Multi-point robust design optimization of wind turbine airfoil under geometric uncertainty’, Proc. Inst. Mech. Eng. A, J. Power Energy, 2012, 226, (2), pp. 245261.
    6. 6)
      • 6. Sagol, E., Reggio, M., Ilinca, A.: ‘Issues concerning roughness on wind turbine blades’, Renew. Sustain. Energy Rev., 2013, 23, pp. 514525.
    7. 7)
      • 7. Heo, Y.G., Choi, N.J., Choi, K.H., et al: ‘CFD study on aerodynamic power output of a 110 kW building augmented wind turbine’, Energy Build., 2016, 129, pp. 162173.
    8. 8)
      • 8. El-Zahaby, A.M., Kabeel, A., Elsayed, S., et al: ‘CFD analysis of flow fields for shrouded wind turbine's diffuser model with different flange angles’, Alexandria Eng. J., 2017, 56, (1), pp. 171179.
    9. 9)
      • 9. Kumar, A., Dwivedi, A., Paliwal, V., et al: ‘Free vibration analysis of al 2024 wind turbine blade designed for Uttarakhand region based on FEA’, Procedia Technol., 2014, 14, pp. 336347.
    10. 10)
      • 10. Raman, V., Drissi-Habti, M., Guillaumat, L., et al: ‘Numerical simulation analysis as a tool to identify areas of weakness in a turbine wind-blade and solutions for their reinforcement’, Compos. B, Eng., 2016, 103, pp. 2339.
    11. 11)
      • 11. Yin, C., Zhang, Z., Wang, Z., et al: ‘Numerical simulation and experimental validation of ultrasonic de-icing system for wind turbine blade’, Appl. Acoust., 2016, 114, pp. 1926.
    12. 12)
      • 12. Chen, J., Wang, Q., Zhang, S., et al: ‘A new direct design method of wind turbine airfoils and wind tunnel experiment’, Appl. Math. Model., 2016, 40, (3), pp. 20022014.
    13. 13)
      • 13. Li, Q., Maeda, T., Kamada, Y., et al: ‘Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades)’, Renew. Energy, 2016, 96, pp. 928939.
    14. 14)
      • 14. Castellani, F., Astolfi, D., Sdringola, P., et al: ‘Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment’, Appl. Energy, 2017, 185, pp. 10761086.
    15. 15)
      • 15. McKay, P., Carriveau, R., Ting, D.S.-K.: ‘Wake impacts on downstream wind turbine performance and yaw alignment’, Wind Energy, 2013, 16, (2), pp. 221234.
    16. 16)
      • 16. Djeziri, M., Ananou, B., Ouladsine, M.: ‘Data driven and model based fault prognosis applied to a mechatronic system’. 2013 Fourth Int. Conf. on Power Engineering, Energy and Electrical Drives (POWERENG), Istanbul, 2013, pp. 534539.
    17. 17)
      • 17. Kim, S.-Y., Ra, I.-H., Kim, S.-H.: ‘Design of wind turbine fault detection system based on performance curve’. 2012 Joint 6th Int. Conf. on Soft Computing and Intelligent Systems (SCIS) and 13th Int. Symp. on Advanced Intelligent Systems (ISIS), Kobe, 2012, pp. 20332036.
    18. 18)
      • 18. Kusiak, A., Zheng, H., Song, Z.: ‘Models for monitoring wind farm power’, Renew. Energy, 2009, 34, (3), pp. 583590.
    19. 19)
      • 19. Morshedizadeh, M., Kordestani, M., Carriveau, R., et al: ‘Application of imputation techniques and adaptive neuro-fuzzy inference system to predict wind turbine power production’, Energy, 2017, 138, pp. 394404.
    20. 20)
      • 20. Yang, W., Jiang, J.: ‘Wind turbine condition monitoring and reliability analysis by SCADA information’. 2011 Second Int. Conf. on Mechanic Automation and Control Engineering (MACE), Inner Mongolia, 2011, pp. 18721875.
    21. 21)
      • 21. Salahshoor, K., Khoshro, M.S., Kordestani, M.: ‘Fault detection and diagnosis of an industrial steam turbine using a distributed configuration of adaptive neurofuzzy inference systems’, Simul. Modelling Pract. Theory, 2011, 19, (5), pp. 12801293.
    22. 22)
      • 22. Kim, H.-E., Tan, A.C., Mathew, J., et al: ‘Bearing fault prognosis based on health state probability estimation’, Expert Syst. Appl., 2012, 39, (5), pp. 52005213.
    23. 23)
      • 23. Yin, Z., Hou, J.: ‘Recent advances on svm based fault diagnosis and process monitoring in complicated industrial processes’, Neurocomputing, 2016, 174, pp. 643650.
    24. 24)
      • 24. Kim, H., Na, M.G., Heo, G.: ‘Application of monitoring, diagnosis, and prognosis in thermal performance analysis for nuclear power plants’, Nucl. Eng. Technol., 2014, 46, (6), pp. 737752.
    25. 25)
      • 25. Niu, G., Yang, B.-S.: ‘Dempster–Shafer regression for multi-step-ahead time series prediction towards data-driven machinery prognosis’, Mech. Syst. Signal Process., 2009, 23, (3), pp. 740751.
    26. 26)
      • 26. Petković, D., Ćojbašič, Ž, Nikolić, V.: ‘Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation’, Renew. Sust. Energy Rev., 2013, 28, pp. 191195.
    27. 27)
      • 27. Lorton, A., Fouladirad, M., Grall, A.: ‘A methodology for probabilistic model-based prognosis’, Eur. J. Oper. Res., 2013, 225, (3), pp. 443454.
    28. 28)
      • 28. Wang, W.: ‘A two-stage prognosis model in condition based maintenance’, Eur. J. Oper. Res., 2007, 182, (3), pp. 11771187.
    29. 29)
      • 29. Chen, C., Brown, D., Sconyers, C., et al: ‘An integrated architecture for fault diagnosis and failure prognosis of complex engineering systems’, Expert Syst. Appl., 2012, 39, (10), pp. 90319040.
    30. 30)
      • 30. Son, J., Zhou, Q., Zhou, S., et al: ‘Evaluation and comparison of mixed effects model based prognosis for hard failure’, IEEE Trans. Reliab., 2013, 62, (2), pp. 379394.
    31. 31)
      • 31. Liu, S., Wang, Y., Tian, F.: ‘Prognosis of underground cable via online datadriven method with field data’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 77867794.
    32. 32)
      • 32. Wang, Z., Hu, C., Wang, W., et al: ‘An off-online fuzzy modelling method for fault prognosis with an application’. 2012 IEEE Conf. on Prognostics and System Health Management (PHM), Beijing, 2012, pp. 17.
    33. 33)
      • 33. Yu, M., Wang, D., Luo, M., et al: ‘Prognosis of hybrid systems with multiple incipient faults: augmented global analytical redundancy relations approach’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 2011, 41, (3), pp. 540551.
    34. 34)
      • 34. Sheppard, J.W., Kaufman, M.A.: ‘A Bayesian approach to diagnosis and prognosis using built-in test’, IEEE Trans. Instrum. Meas., 2005, 54, (3), pp. 10031018.
    35. 35)
      • 35. Hu, J., Zhang, L., Ma, L., et al: ‘An integrated safety prognosis model for complex system based on dynamic Bayesian network and ant colony algorithm’, Expert Syst. Appl., 2011, 38, (3), pp. 14311446.
    36. 36)
      • 36. Liu, Q., Dong, M., Lv, W., et al: ‘A novel method using adaptive hidden semi-markov model for multi-sensor monitoring equipment health prognosis’, Mech. Syst. Signal Process., 2015, 64, pp. 217232.
    37. 37)
      • 37. Dong, M., He, D.: ‘Hidden semi-Markov model-based methodology for multisensory equipment health diagnosis and prognosis’, Eur. J. Oper. Res., 2007, 178, (3), pp. 858878.
    38. 38)
      • 38. Singleton, R.K., Strangas, E.G., Aviyente, S.: ‘Discovering the hidden health states in bearing vibration signals for fault prognosis’. IECON 2014 – 40th Annual Conf. of the IEEE Industrial Electronics Society, Dallas, TX, 2014, pp. 34383444.
    39. 39)
      • 39. Li, G., Qin, S.J., Ji, Y., et al: ‘Reconstruction based fault prognosis for continuous processes’, Control Eng. Pract., 2010, 18, (10), pp. 12111219.
    40. 40)
      • 40. Zanardelli, W.G., Strangas, E.G., Khalil, H.K., et al: ‘Wavelet-based methods for the prognosis of mechanical and electrical failures in electric motors’, Mech. Syst. Signal Process., 2005, 19, (2), pp. 411426.
    41. 41)
      • 41. Zhou, B., Ye, H., Zhang, H., et al: ‘Process monitoring of iron-making process in a blast furnace with PCA-based methods’, Control Eng. Pract., 2016, 47, pp. 114.
    42. 42)
      • 42. Salahshoor, K., Kordestani, M., Khoshro, M.S.: ‘Design of online soft sensors based on combined adaptive PCA and DMLP neural networks’. Control and Decision Conf., (CCDC'09), Guilin, 2009, pp. 34813486.
    43. 43)
      • 43. Camacho, J., Pérez-Villegas, A., García-Teodoro, P., et al: ‘PCA-based multivariate statistical network monitoring for anomaly detection’, Comput. Secur., 2016, 59, pp. 118137.
    44. 44)
      • 44. Rahman, M.G., Islam, M.Z.: ‘Missing value imputation using decision trees and decision forests by splitting and merging records: two novel techniques’, Knowl.-Based Syst., 2013, 53, pp. 5165.
    45. 45)
      • 45. Zhu, X., Zhang, S., Jin, Z., et al: ‘Missing value estimation for mixed-attribute data sets’, IEEE Trans. Knowl. Data Eng., 2011, 23, (1), pp. 110121.
    46. 46)
      • 46. Farhangfar, A., Kurgan, L., Dy, J.: ‘Impact of imputation of missing values on classification error for discrete data’, Pattern Recognit., 2008, 41, (12), pp. 36923705.
    47. 47)
      • 47. Farhangfar, A., Kurgan, L.A., Pedrycz, W.: ‘A novel framework for imputation of missing values in databases’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 2007, 37, (5), pp. 692709.
    48. 48)
      • 48. Blake, R., Mangiameli, P.: ‘The effects and interactions of data quality and problem complexity on classification’, J. Data Inf. Qual., 2011, 2, (2), p. 8.
    49. 49)
      • 49. Schlechtingen, M., Santos, I.F.: ‘Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection’, Mech. Syst. Signal Process., 2011, 25, (5), pp. 18491875.
    50. 50)
      • 50. Swingler, K.: ‘Applying neural networks: a practical guide’ (Morgan Kaufmann, San Francisco, CA, 1996).
    51. 51)
      • 51. Caselitz, P., Giebhardt, J.: ‘Advanced maintenance and repair for offshore wind farms using fault prediction techniques’. Proc. of the World Wind Energy Conf., Berlin, 2002.
    52. 52)
      • 52. Frank, A., Asuncion, A.: ‘UCI machine learning repository’, University of California, School of Information and Computer Science. Irvine, CA, 2010, http://archive.ics.uci.edu/ml.
    53. 53)
      • 53. Graham, J.W.: ‘Missing data analysis: making it work in the real world’, Annu. Rev. Psychol., 2009, 60, pp. 549576.
    54. 54)
      • 54. Meng, Z., Shi, Z.: ‘Extended rough set-based attribute reduction in inconsistent incomplete decision systems’, Inf. Sci., 2012, 204, pp. 4469.
    55. 55)
      • 55. Zhang, S.: ‘Shell-neighbor method and its application in missing data imputation’, Appl. Intell., 2011, 35, (1), pp. 123133.
    56. 56)
      • 56. García-Laencina, P.J., Sancho-Gómez, J.-L., Figueiras-Vidal, A.R.: ‘Pattern classification with missing data: a review’, Neural Comput. Appl., 2010, 19, (2), pp. 263282.
    57. 57)
      • 57. Ding, Y., Ross, A.: ‘A comparison of imputation methods for handling missing scores in biometric fusion’, Pattern Recognit., 2012, 45, (3), pp. 919933.
    58. 58)
      • 58. Yang, X., Huang, B., Zhao, Y., et al: ‘Generalized expectation–maximization approach to LPV process identification with randomly missing output data’, Chemometr. Intell. Lab. Syst., 2015, 148, pp. 18.
    59. 59)
      • 59. Wold, S.: ‘Exponentially weighted moving principal components analysis and projections to latent structures’, Chemometr. Intell. Lab. Syst., 1994, 23, (1), pp. 149161.
    60. 60)
      • 60. Li, W., Yue, H.H., Valle-Cervantes, S., et al: ‘Recursive PCA for adaptive process monitoring’, J. Process Control, 2000, 10, (5), pp. 471486.
    61. 61)
      • 61. Ng, K.-C., Abramson, B.: ‘Consensus diagnosis: a simulation study’, IEEE Trans. Syst. Man Cybern., 1992, 22, (5), pp. 916928.
    62. 62)
      • 62. Herrera-Viedma, E., Cordón, O., Luque, M., et al: ‘A model of fuzzy linguistic IRS based on multi-granular linguistic information’, Int. J. Approx. Reason., 2003, 34, (2-3), pp. 221239.
    63. 63)
      • 63. Kordestani, M., Saif, M.: ‘Data fusion for fault diagnosis in smart grid power systems’. 2017 IEEE 30th Canadian Conf. on Electrical and Computer Engineering (CCECE), Windsor, 2017, pp. 16.
    64. 64)
      • 64. Torra, V.: ‘OWA operators in data modeling and reidentification’, IEEE Trans. Fuzzy Syst., 2004, 12, (5), pp. 652660.
    65. 65)
      • 65. Liu, X.: ‘Some properties of the weighted OWA operator’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2006, 36, (1), pp. 118127.
    66. 66)
      • 66. Soltani, S., Kordestani, M., Aghaee, P.K., et al: ‘Improved estimation for well-logging problems based on fusion of four types of kalman filters’, IEEE Trans. Geosci. Remote Sens., 2018, 56, (2), pp. 647654.
    67. 67)
      • 67. Filev, D., Yager, R.R.: ‘Learning OWA operator weights from data’. IEEE World Congress on Computational Intelligence. Proc. of the Third IEEE Conf. on Fuzzy Systems, Orlando, 1994, pp. 468473.
    68. 68)
      • 68. Filev, D., Yager, R.R.: ‘On the issue of obtaining OWA operator weights’, Fuzzy Sets Syst., 1998, 94, (2), pp. 157169.
    69. 69)
      • 69. Salahshoor, K., Kordestani, M., Khoshro, M.S.: ‘Design of online soft sensors based on combined adaptive PCA and RBF neural networks’. IEEE Symp. on Computational Intelligence in Control and Automation (CICA 2009), Nashville, TN, 2009, pp. 8995.
    70. 70)
      • 70. Shrme, A.E.: ‘Hybrid intelligent technique for automatic communication signals recognition using bees algorithm and MLP neural networks based on the efficient features’, Expert Syst. Appl., 2011, 38, (5), pp. 60006006.
    71. 71)
      • 71. Waqar, T., Demetgul, M.: ‘Thermal analysis MLP neural network based fault diagnosis on worm gears’, Measurement, 2016, 86, pp. 5666.
    72. 72)
      • 72. Takagi, H., Hayashi, I.: ‘NN-driven fuzzy reasoning’, Int. J. Approx. Reason., 1991, 5, (3), pp. 191212.
    73. 73)
      • 73. Jang, J.-S.: ‘ANFIS: adaptive-network-based fuzzy inference system’, IEEE Trans. Syst. Man Cybern., 1993, 23, (3), pp. 665685.
    74. 74)
      • 74. Schlechtingen, M., Santos, I.F., Achiche, S.: ‘Using data-mining approaches for wind turbine power curve monitoring: a comparative study’, IEEE Trans. Sustain. Energy, 2013, 4, (3), pp. 671679.
    75. 75)
      • 75. Sfetsos, A.: ‘A comparison of various forecasting techniques applied to mean hourly wind speed time series’, Renew. Energy, 2000, 21, (1), pp. 2335.
    76. 76)
      • 76. Potter, C.W., Negnevitsky, M.: ‘Very short-term wind forecasting for Tasmanian power generation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 965972.
    77. 77)
      • 77. Mamdani, E.H.: ‘Application of fuzzy logic to approximate reasoning using linguistic synthesis’. Proc. of the Sixth Int. Symp. on Multiple-Valued Logic, Logan, UT, 1976, pp. 196202.
    78. 78)
      • 78. Sugeno, M.: ‘Industrial applications of fuzzy control’ (Elsevier Science Inc., New York, NY, 1985).
    79. 79)
      • 79. Hasiloglu, A., Yilmaz, M., Comakli, O., et al: ‘Adaptive neuro-fuzzy modeling of transient heat transfer in circular duct air flow’, Int. J. Thermal Sci., 2004, 43, (11), pp. 10751090.
    80. 80)
      • 80. Salahshoor, K., Kordestani, M., Khoshro, M.S.: ‘Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers’, Energy, 2010, 35, (12), pp. 54725482.
    81. 81)
      • 81. Schlechtingen, M., Santos, I.F., Achiche, S.: ‘Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 1: system description’, Appl. Soft Comput., 2013, 13, (1), pp. 259270.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0736
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0736
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address