Control, implementation, and analysis of a dual two-level photovoltaic inverter based on modified proportional–resonant controller

Control, implementation, and analysis of a dual two-level photovoltaic inverter based on modified proportional–resonant controller

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a modified proportional–resonant (M-PR) control topology for single-stage photovoltaic (PV) system, operating both in grid-connected and stand-alone modes. Dual two-level voltage source inverter fed three-phase open-end winding transformer is used to supply the load in this scheme. The M-PR controller is developed for the inner current control loop of the system. The M-PR controller has the ability to track ac current with zero steady-state error. The outer dc-link voltage control loop is developed through the indirect vector control method at synchronously rotating reference frame. The control scheme ensures improved performance of the system at variable solar irradiance and load disturbances. The performance analysis of the dual two-level PV inverter is carried out for different operating conditions. The control scheme is implemented in MATLAB–SIMULINK environment. The theoretical results are verified through experiments in a laboratory prototype. The experimental results show close match with their theoretical counterparts.


    1. 1)
      • 1. Blaabjerg, F., Teodorescu, R., Liserre, M., et al: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 13981409.
    2. 2)
      • 2. Leon, J.I., Kouro, S., Franquelo, L.G., et al: ‘The essential role and the continuous evolution of modulation techniques for voltage-source inverters in the past, present, and future power electronics’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 26882701.
    3. 3)
      • 3. Mishra, S., Mishra, Y.: ‘Decoupled controller for single-phase grid connected rooftop PV systems to improve voltage profile in residential distribution systems’, IET Renew. Power Gener., 2017, 11, (2), pp. 370377.
    4. 4)
      • 4. Saxena, N., Singh, B., Vyas, A.L.: ‘Single-phase solar PV system with battery and exchange of power in grid-connected and standalone modes’, IET Renew. Power Gener., 2017, 11, (2), pp. 325333.
    5. 5)
      • 5. Althobaiti, A., Armstrong, M., Elgendy, M.A.: ‘Current control of three-phase grid-connected PV inverters using adaptive PR controller’. 2016 7th Int. Renewable Energy Congress (IREC), Hammamet, 2016, pp. 16.
    6. 6)
      • 6. Tischer, C.B., Tibola, J.R., Scherer, L.G., et al: ‘Proportional-resonant control applied on voltage regulation of standalone SEIG for micro-hydro power generation’, IET Renew. Power Gener., 2017, 11, (5), pp. 593602.
    7. 7)
      • 7. Orlowska-Kowalska, T., Blaabjerg, F., Rodriguez, J.: ‘Advanced and intelligent control in power electronics and Drives’ (Springer, Switzerland, 2009).
    8. 8)
      • 8. Teodorescu, R., Blaabjerg, F., Liserre, M., et al: ‘Proportional-resonant controllers and filters for grid-connected voltage-source converters’, IEE Proc. Electr. Power Appl., 2006, 153, (5), pp. 750762.
    9. 9)
      • 9. Zmood, D.N., Holmes, D.G.: ‘Stationary frame current regulation of PWM inverters with zero steady-state error’, IEEE Trans. Power Electron., 2003, 18, (3), pp. 814822.
    10. 10)
      • 10. Ngo, T., Santoso, S.: ‘Improving proportional-resonant controller for unbalanced voltage and frequency variation grid’. 2016 IEEE/PES Transmission and Distribution Conf. and Exposition (T&D), Dallas, TX, 2016, pp. 15.
    11. 11)
      • 11. Hasanzadeh, A., Onar, O.C., Mokhtari, H., et al: ‘A proportional-resonant controller-based wireless control strategy with a reduced number of sensors for parallel-operated UPSs’, IEEE Trans. Power Deliv., 2010, 25, (1), pp. 468478.
    12. 12)
      • 12. Ye, T., Dai, N., Lam, C.S., et al: ‘Analysis, design, and implementation of a quasi-proportional-resonant controller for a multifunctional capacitive-coupling grid-connected inverter’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 42694280.
    13. 13)
      • 13. Komurcugil, H., Altin, N., Ozdemir, S., et al: ‘Lyapunov-function and proportional-resonant-based control strategy for single-phase grid-connected VSI With LCL filter’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 28382849.
    14. 14)
      • 14. Ye, T., Dai, N., Lam, C.S., et al: ‘Analysis, design and implementation of a quasi-proportional-resonant controller for multifunctional capacitive-coupling grid-connected inverter’. 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, 2015, pp. 25062513.
    15. 15)
      • 15. Devassy, S., Singh, B.: ‘Performance analysis of proportional resonant and ADALINE-based solar photovoltaic-integrated unified active power filter’, IET Renew. Power Gener., 2017, 11, (11), pp. 13821391.
    16. 16)
      • 16. Gao, J., Wu, X., Huang, S., et al: ‘Torque ripple minimisation of permanent magnet synchronous motor using a new proportional resonant controller’, IET Power Electron., 2017, 10, (2), pp. 208214.
    17. 17)
      • 17. Kouro, S., Pou, J., Franquelo, L.G., et al: ‘Recent advances and industrial applications of multilevel converters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 25532580.
    18. 18)
      • 18. Gupta, K.K., Ranjan, A., Bhatnagar, P., et al: ‘Multilevel inverter topologies with reduced device count: a review’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 135151.
    19. 19)
      • 19. Malinowski, M., Gopakumar, K., Rodriguez, J., et al: ‘A survey on cascaded multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 21972206.
    20. 20)
      • 20. Babu, N.N.V.S., Fernandes, B.G.: ‘Cascaded two-level inverter-based multilevel STATCOM for high-power applications’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 9931001.
    21. 21)
      • 21. Yang, Y., Zhou, K., Blaabjerg, F.: ‘Current harmonics from single-phase grid-connected inverters-examination and suppression’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (1), pp. 221233.
    22. 22)
      • 22. Jain, S., Karampuri, R., Somasekhar, V.T.: ‘An integrated control algorithm for a single-stage PV pumping system using an open-end winding induction motor’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 956965.
    23. 23)
      • 23. Pires, V.F., Martins, J.F., Hao, C.: ‘Dual-inverter for grid-connected photovoltaic system: modeling and sliding mode control’, Sol. Energy, 2012, 86, (7), pp. 21062115.
    24. 24)
      • 24. Grandi, G., Rossi, C., Ostojic, D., et al: ‘A new multilevel conversion structure for grid-connected PV applications’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 44164426.
    25. 25)
      • 25. Kiadehi, A.D., Drissi, K.E.K., Pasquier, C.: ‘Voltage THD reduction for dual-inverter fed open-end load with isolated DC sources’, IEEE Trans. Ind. Electron., 2017, 64, (3), pp. 21022111.
    26. 26)
      • 26. Debnath, D., Chatterjee, K.: ‘Two-stage solar photovoltaic-based stand-alone scheme having battery as energy storage element for rural deployment’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 41484157.
    27. 27)
      • 27. Das, M., Agarwal, V.: ‘Novel high performance stand alone solar PV system with high gain, high efficiency DC–DC converter power stages’, IEEE Trans. Ind. Appl., 2015, 99, (99), pp. 11.
    28. 28)
      • 28. Kumar, S.S., Dharmireddy, G., Raja, P., et al: ‘A voltage controller in photovoltaic system without battery storage for stand-alone applications’. Int. Conf. on Electrical, Control and Computer Engineering (INECCE), 2011, Pahang, June 2011, pp. 269274.
    29. 29)
      • 29. Sanchis, P., Ursua, A., Gubia, E., et al: ‘Control of three-phase stand-alone photovoltaic systems with unbalanced loads’. Proc. of the IEEE Int. Symp. on Industrial Electronics, 2005, vol. 2, pp. 633638.
    30. 30)
      • 30. Villalva, M.G., Gazoli, J.R., Filho, E.R.: ‘Comprehensive approach to modeling and simulation of photovoltaic arrays’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 11981208.
    31. 31)
      • 31. Gow, J.A., Manning, C.D.: ‘Development of a photovoltaic array model for use in power-electronics simulation studies’, IEE Proc. Electr. Power Appl., 1999, 146, (2), pp. 193200.
    32. 32)
      • 32. Rahman1, S.A., Varma1, R.K., Vanderheide, T.: ‘Generalised model of a photovoltaic panel’, IET Renew. Power Gener., 2013, 8, (3), pp. 217229.
    33. 33)
      • 33. Xia, C., Zhou, F., Wang, Z., et al: ‘Equivalent switch circuit model and proportional resonant control for triple line-voltage cascaded voltage-source converter’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 23892401.

Related content

This is a required field
Please enter a valid email address