Numerical simulation studies on performance, soot and NO x emissions of dual-fuel engine fuelled with hydrogen enriched biogas mixtures

Numerical simulation studies on performance, soot and NO x emissions of dual-fuel engine fuelled with hydrogen enriched biogas mixtures

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study analyses the effects of hydrogen concentration enriched biogas on indicated engine cycle work, soot and NO x emissions of dual-fuel engine. The results show that if advance injection angle of the engine is fixed at the same value as biogas only mode operation, peak value of in-cylinder pressure increases significantly but indicated engine cycle work is only slightly improved with an increase in hydrogen concentration. Optimum advance injection angle decreases as increasing hydrogen concentration in the fuel mixture. At a given engine speed, NO x emissions decrease with increasing equivalence ratio whereas soot emissions increase almost proportionally with the equivalence ratio. At a given equivalence ratio, NO x emission increases with the increasing hydrogen concentration in fuel mixture whereas soot emission decreases contrarily. The maximum soot peak value is obtained with slightly rich mixture at equivalence ratio of around 1.1. Lean burn mixture and high hydrogen concentration result in extremely low soot concentration. Soot emission is practically negligible at equivalence ratio of about 0.9 and 20% hydrogen concentration in mixture with biogas. As hydrogen concentration increases, the decrease of optimum advance injection angle reduces simultaneously both soot and NO x emissions.


    1. 1)
      • 1. Reddy, K.S., Aravindhan, S., Mallick, T.K.: ‘Investigation of performance and emission characteristics of a biogas fuelled electric generator integrated with solar concentrated photovoltaic system’, Renew. Energy, 2016, 92, pp. 233243.
    2. 2)
      • 2. Sahoo, B.B., Sahoo, N., Saha, U.K.: ‘Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines-A critical review’, Renew. Sust. Energy Rev., 2009, 13, pp. 11511184.
    3. 3)
      • 3. Bora, B.J., Saha, U.K., Chatterjee, S., et al: ‘Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas’, Energy Convers. Manag., 2014, 87, pp. 10001009.
    4. 4)
      • 4. Van Ga, B., Van Nam, T., Minh Tien, L., et al: ‘Combustion analysis of biogas premixed charge diesel dual fuelled engine’, Int. J. Eng. Res. Technol., 2014, 3, (11), pp. 188194.
    5. 5)
      • 5. Verma, S., Das, L.M., Kaushik, S.C.: ‘Effects of varying composition of biogas on performance and emission characteristics of compression ignition engine using exergy analysis’, Energy Convers. Manage., 2017, 138, pp. 346359.
    6. 6)
      • 6. Liu, F., Guo, H., Smallwood, G.J., et al: ‘The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NOx formation’, Combust. Flame, 2001, 125, pp. 778787.
    7. 7)
      • 7. Kim, Y., Kawahara, N., Tsuboi, K., et al: ‘Combustion characteristics and NOx emissions of biogas fuels with various CO2 contents in a micro co-generation spark-ignition engine’, Appl. Energy, 2016, 182, pp. 539547.
    8. 8)
      • 8. Ilbas, M., Crayford, A.P., Yilmaz, I., et al: ‘Laminar-burning velocities of hydrogen–air and hydrogen–methane–air mixture: an experimental study’, Int. J. Hydrog. Energy, 2006, 31, pp. 17681779.
    9. 9)
      • 9. Chung, K., Chun, K.M.C.: ‘Combustion characteristics and generating efficiency using biogas with added hydrogen’. SAE Technical Paper, No. 2013-01-2506, 2013.
    10. 10)
      • 10. Porpatham, E., Ramesh, A., Nagalingam, B.: ‘Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine’, Int. J. Hydrog. Energy, 2007, 32, (12), pp. 20572065.
    11. 11)
      • 11. Rakopoulos, C.D., Michos, C.N., Giakoumis, E.G.: ‘Thermodynamic analysis of SI engine operation on variable composition biogas-hydrogen blends using a quasi-dimensional, multi-zone combustion model’, SAE Int. J. Engines, 2009, 2, (1), pp. 880910.
    12. 12)
      • 12. Di Iorio, S., Sementa, P., Vaglieco, B.M.: ‘Analysis of combustion of methane and hydrogen-methane blends in small DI SI (direct injection spark ignition) engine using advanced diagnostics’, Energy, 2016, 108, pp. 99107.
    13. 13)
      • 13. Qian, Y., Sun, S., Ju, D., et al: ‘Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines’, Renew. Sust. Energy Rev., 2017, 69, pp. 5058.
    14. 14)
      • 14. Akansu, S.O., Dulger, Z., Kahraman, N., et al: ‘Internal combustion engines fuelled by natural gas-hydrogen mixtures’, Int. J. Hydrog. Energy, 2004, 29, pp. 15271539.
    15. 15)
      • 15. Chitragar, P.R., Shivaprasad, K.V., Nayak, V., et al: ‘An experimental study on combustion and emission analysis of four cylinder 4-stroke gasoline engine using pure hydrogen and LPG at idle condition’, Energy Procedia, 2016, 90, pp. 525534.
    16. 16)
      • 16. Jeong, C., Kim, T., Lee, K., et al: ‘Generating efficiency and emissions of a spark-ignition gas engine generator fuelled with biogas-hydrogen blends’, Int. J. Hydrog. Energy, 2009, 34, pp. 96209627.
    17. 17)
      • 17. Yoon, S.H., Lee, C.S.: ‘Experimental investigation on the combustion and exhaust emission characteristics of biogas-biodiesel dual-fuel combustion in a CI engine’, Fuel Process. Technol., 2011, 92, pp. 9921000.
    18. 18)
      • 18. Demuynck, J., Raes, N., Zuliani, M., et al: ‘Local heat flux measurement in a hydrogen and methane spark ignition engine with a thermopile sensor’, Int. J. Hydrog. Energy, 2009, 34, pp. 98579868.
    19. 19)
      • 19. Kozarac, D., Taritas, I., Vuilleumier, D., et al: ‘Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine’, Energy, 2016, 115, pp. 180193.
    20. 20)
      • 20. Talibi, M., Hellier, P., Ladommatos, N.: ‘Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine’, Energy, 2017, 124, pp. 397412.
    21. 21)
      • 21. Park, C., Park, S., Lee, Y., et al: ‘Performance and emission characteristics of a SI engine fueled by low calorific biogas blended with hydrogen’, Int. J. Hydrog. Energy, 2011, 36, (16), pp. 1008010088.
    22. 22)
      • 22. Park, C., Park, S., Kim, C., et al: ‘Effects of EGR on performance of engines with spark gap projection and fueled by biogas-hydrogen blends’, Int. J. Hydrog. Energy, 2012, 37, pp. 1464014648.
    23. 23)
      • 23. Nagalingam, B., Duebel, F., Schmillen, K.: ‘Performance study using natural gas, hydrogen-supplemented natural gas and hydrogen in AVL research engine’, Int. J. Hydrog. Energy, 1983, 8, (9), pp. 715720.
    24. 24)
      • 24. Ma, F., Wang, Y., Liu, H., et al: ‘Experimental study on thermal efficiency and emission characteristics of a lean burn hydrogen enriched natural gas engine’, Int. J. Hydrog. Energy, 2007, 32, (18), pp. 50675075.
    25. 25)
      • 25. Wang, J., Huang, Z., Fang, Y., et al: ‘Combustion behaviors of a direct injection engine operating on various fractions of natural gas-hydrogen blends’, Int. J. Hydrog. Energy, 2007, 32, (15), pp. 35553564.
    26. 26)
      • 26. Lee, K., Kim, T., Cha, H., et al: ‘Generating efficiency and NOx emissions of a gas engine generator fueled with a biogas-hydrogen blend and using an exhaust gas recirculation system’, Int. J. Hydrog. Energy, 2010, 35, pp. 57235730.
    27. 27)
      • 27. Van Ga, B., Van Nam, T., Thanh Hai Tung, T.: ‘A simulation of effects of compression ratios on the combustion in engines fuelled with biogas with variable CO2 concentrations’, J. Eng. Res. Appl., 2013, 3, (5), pp. 516523. Available at
    28. 28)
      • 28. Van Ga, B., Viet Hai, N., Thi Minh Tu, B., et al: ‘Utilization of poor biogas as fuel for hybrid biogas-diesel dual fuel stationary engine’, Int. J. Renew. Energy Res., 2015, 5, (4), pp. 10071015. Available at
    29. 29)
      • 29. Van Ga, B., Van Nam, T.: ‘Appropriate structural parameters of biogas SI engine converted from diesel engine’, IET Renew. Power Gener., 2014, 8, pp. 17. Available at
    30. 30)
      • 30. Van Ga, B., Thi Minh Tu, B.: ‘Soot emission analysis in combustion of biogas diesel dual fuel engine’, Environ. Sci. Sustain. Dev., 2017, 1, (2), pp. 19. Available at
    31. 31)
      • 31. Yu, H., Liang, X., Wang, Y., et al: ‘Numerical investigation on combustion and emission of a diesel engine using two-stage injection strategy’, Energy Procedia, 2017, 105, pp. 13441349.
    32. 32)
      • 32. Zeldovich, Y.A., Frank-Kamenetskii, D., Sadovnikov, P.: ‘Oxidation of nitrogen in combustion’ (Publishing House of the Academy of Sciences of USSR, Moscow, 1947).
    33. 33)
      • 33. Li, S., Zhou, H., Hou, L., et al: ‘An analytic model for the effects of nitrogen dilution and premixing characteristics on NOx formation in turbulent premixed hydrogen flames’, Int. J. Hydrog. Energy, 2017, 42, (10), pp. 70607070. Available at
    34. 34)
      • 34. Bashtani, J., Seddighi, S., Bahrabadi-Jovein, I.: ‘Control of nitrogen oxide formation in power generation using modified reaction kinetics and mixing’, Energy, 2018, 145, pp. 567581. Available at
    35. 35)
      • 35. Magnussen, B.F., Hjertager, B.H.: ‘On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion’. Symp. (Int.) on Combustion, 1977, vol. 16, no. 1, pp. 719729, doi: 10.1016/S0082-0784(77)80366-4.
    36. 36)
      • 36. Vignon, J.M., Bui Van, G.A.: ‘Calcul de flammes de diffusion verticales par un modele integral’. Joint Meeting the French and German Section of the Combustion Institute, Mulhouse, France, 11–13 October 1995.
    37. 37)
      • 37. Van Ga, B., Xuan Mai, P., Maurice, B., et al: ‘Modèle intégral de flammes turbulentes de diffusion pour le calcul de la combustion diesel’, Entropie, 1999, 35, (216), pp. 5259.
    38. 38)
      • 38. Van Ga, B., Van Lu, L.: ‘Integral model for soot formation calculation of turbulent diffusion flames in industrial furnaces’. 6th European Conf. on Industrial Furnaces and Boilers, Estoril-Lisbon, Portugal, 02–05 April 2002.
    39. 39)
      • 39. Kumar, M., Tsujimura, T., Suzuki, Y.: ‘NOx model development and validation with diesel and hydrogen/diesel dual-fuel system on diesel engine’, Energy, 2018, 145, pp. 496506. Available at

Related content

This is a required field
Please enter a valid email address