access icon free Increasing the reliability of wind turbines using condition monitoring of semiconductor devices: a review

The majority of electrical failures in wind turbines occur in the generator-side semiconductor devices. This is due to temperature swings affecting the layers of insulated-gate bipolar transistors in different ways; these effects are aggravated by the variation of wind speed. The implementation of accurate on-line condition monitoring mainly relies on on-line tracking of the temperature variation of components. The maximum temperature stress is observed at the junction terminal of the devices, which cannot be easily measured. Additionally, it is difficult to track the exact dynamic of temperature due to the slow response of sensors. Thus, several methods have been presented in the technical literature to estimate the junction temperature of the semiconductor devices. Each method has merits and disadvantages in terms of accuracy and complexity, as failure mechanisms have their own effects on the variation of junction temperature and some or all of the electrical parameters. Therefore, detection algorithms have to determine the root cause of the temperature variation. This study comparatively reviews the condition monitoring methods presented so far and gives directions on the future steps that should be addressed by research in this area.

Inspec keywords: power system reliability; condition monitoring; wind turbines; power semiconductor devices

Other keywords: reliability; electrical failures; semiconductor devices; wind turbines; on-line condition monitoring; electrical parameters; temperature variation on-line tracking; sensors; insulated-gate bipolar transistors; grid; generator converters; maximum temperature stress

Subjects: Reliability; Power semiconductor devices; Wind power plants

References

    1. 1)
      • 19. Eleffendi, M., Johnson, C.: ‘In-service diagnostics for wire-bond lift-off and solder fatigue of power semiconductor packages’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 71877198.
    2. 2)
      • 59. Arab, M., Lefebvre, S., Khatir, Z., et al: ‘Experimental investigations of trench field stop IGBT under repetitive short-circuits operations’. Proc. Int. Conf. Power Electronics Specialists, Rhodes, Greece, June 2008.
    3. 3)
      • 63. Wang, H., Liserre, M., Blaabjerg, F.: ‘Toward reliable power electronics: challenges, design tools, and opportunities’, IEEE Ind. Electron., 2013, 7, (2), pp. 19324529.
    4. 4)
      • 67. Reigosa, P.D., Wang, H., Yang, Y., et al: ‘Prediction of bond wire fatigue of IGBTs in a PV inverter under a long-term operation’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 71717182.
    5. 5)
      • 6. Singh, A., Anurag, A.: ‘Evaluation of Vce at inflection point for monitoring bond wire degradation in discrete packaged IGBTs’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 24812484.
    6. 6)
      • 26. Chen, N., Chimento, F., Nawaz, M., et al: ‘Dynamic characterization of parallel-connected high-power IGBT modules’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 539546.
    7. 7)
      • 47. Madhusoodhanan, S., Mainali, K., Tripathi, A.K., et al: ‘Power loss analysis of medium-voltage three-phase converters using 15-kV/40-A SiC N-IGBT’, IEEE Power Electron. Appl., 2016, 4, (3), pp. 902917.
    8. 8)
      • 8. Faulstich, S., Hahn, B., Tavner, P.J.: ‘Wind turbine downtime and its importance for offshore deployment’, Wind Energy, 2011, 14, (3), pp. 327337.
    9. 9)
      • 42. Lehmann, J., Netzel, M., Herzer, R., et al: ‘Method for electrical detection of bond wire lift-off for power semiconductor’. Int. Symp. Power Semiconductor Devices IC's, Cambridge, UK, 2003.
    10. 10)
      • 30. Chen, L., Jiang, H.: ‘Synchronous laser scanning IR imaging for chip bonding defect inspection’. Proc. Int. Conf. ICEPT, Wuhan, China, 2016.
    11. 11)
      • 3. Sheng, S.: ‘Report on wind turbine subsystem reliability- a survey of various databases’, NREL, June 2013, https://www.nrel.gov/docs/fy13osti/59111.pdf.
    12. 12)
      • 40. Tu, P., Wang, P., Hu, X., et al: ‘Analytical evaluation of IGBT turn-on loss with double pulse testing’. ICIEA, Hefei, China, June 2016.
    13. 13)
      • 61. Zorn, C., Piton, M., Kaminski, N.: ‘Impact of humidity on railway converters’. Proc. Int. Conf. Power Electronics, Nuremberg, Germany, 2017.
    14. 14)
      • 29. Dupont, L., Avenas, Y.: ‘Preliminary evaluation of thermo-sensitive electrical parameters based on the forward voltage for online chip temperature measurements of IGBT devices’, IEEE Trans. Ind. Appl., 2015, 51, (6), pp. 46884698.
    15. 15)
      • 1. Pedro García Márquez, F., Mark Tobia, A., María Pinar Pérez, J., et al: ‘Condition monitoring of wind turbines: techniques and methods’, Renew. Energy, 2012, 46, pp. 169178.
    16. 16)
      • 4. Bi, R., Qian, K., Hepburn, D., et al: ‘A survey of failures in wind turbine generator systems with focus on a wind farm in China’, Smart Grid Clean Energy, 2014, 3, (4), pp. 366373.
    17. 17)
      • 14. Fu, S., Mei, Y., Li, X., et al: ‘Reliability evaluation of multichip phase-leg IGBT modules using pressureless sintering of nanosilver paste by power cycling tests’, IEEE Trans. Power Electron., 2017, 32, (8), pp. 60496058.
    18. 18)
      • 66. Weber, S., Schlüter, M., Borowski, D.: ‘Simple analog detection of turn-off delay time for IGBT junction temperature estimation’. Proc. Int. Conf. ECCE, Milwaukee, WI, USA, September 2016.
    19. 19)
      • 34. Sarkany, Z., He, W., Rencz, M.: ‘Temperature change induced degradation of SiC MOSFET devices’. Proc. Int. Conf. Power Electronics, Las Vegas, NV, USA, May 2016.
    20. 20)
      • 60. Zorn, C., Kaminski, N.: ‘Acceleration of temperature humidity bias (THB) testing on IGBT modules by high bias levels’. Int. Symp. ISPSD, Nuremberg, Germany, 2015.
    21. 21)
      • 52. Ginart, A.E., Brown, D., Kalgren, P.W., et al: ‘Online ringing characterization as a diagnostic technique for IGBTs in power devices’, IEEE Trans. Instrum. Meas., 2009, 58, (7), pp. 22902299.
    22. 22)
      • 9. Ye, X., Chen, C., Wang, Y., et al: ‘Online condition monitoring of power MOSFET gate oxide degradation based on miller platform voltage’, IEEE Trans. Power Electron., 2017, 32, (6), pp. 47764784.
    23. 23)
      • 31. Ghimire, P., Pedersen, K., Vega, A., et al: ‘A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application’. Proc. Int. Conf. CIPS, Nuremberg, Germany, February 2014.
    24. 24)
      • 58. Astigarraga, D., Martin Ibanez, F., Galarza, A., et al: ‘Analysis of the results of accelerated aging tests in insulated gate bipolar transistors’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 79537962.
    25. 25)
      • 49. Sankaran, V., Xu, X.: USA; Patent number US 55284476 A, 1994.
    26. 26)
      • 43. Wang, H., Liserre, M., Blaabjerg, F., et al: ‘Transitioning to physics of failure as a reliability driver in power electronics’, IEEE Power Electron., 2014, 2, (1), pp. 97114.
    27. 27)
      • 51. Xiang, D., Ran, L., Tavner, P., et al: ‘Condition monitoring power module solder fatigue using inverter harmonic identification’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 235247.
    28. 28)
      • 64. Mingxing, D., Kexin, W., Jian, L., et al: ‘Condition monitoring IGBT module bond wire lift-off using measurable signals’. Proc. Int. Conf. IPEMC, 2012.
    29. 29)
      • 33. Choi, U.-M., Blaabjerg, F.S., Jørgensen, S., et al: ‘Reliability improvement of power converters by means of condition monitoring of IGBT modules’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 79907997.
    30. 30)
      • 5. Katsis, D., van Wyk, J.: ‘Void-induced thermal impedance in power semiconductor modules: some transient temperature effects’, IEEE Trans., 2003, 39, (5), pp. 12391246.
    31. 31)
      • 57. Kuh, H., Mertens, A.: ‘On-line junction temperature measurement of IGBTs based on temperature sensitive electrical parameters’. Proc. Int. Conf. Power Electron and Appl, Barcelona, Spain, September 2009.
    32. 32)
      • 2. Fischer, K., Besnard, F., Bertling, L.: ‘Reliability-centered maintenance for wind turbines based on statistical analysis and practical experience’, IEEE Trans. Energy Convers., 2012, 27, (1), pp. 184195.
    33. 33)
      • 28. Bahman, A.S., Iannuzzo, F., Uhrenfeldt, C., et al: ‘Modeling of short-circuit-related thermal stress in aged IGBT modules’, IEEE Trans. Ind. Appl., 2017, 53, (5), pp. 47884795.
    34. 34)
      • 16. Khanna, V.: ‘Insulated gate bipolar transistor IGBT theory and design’ (John Wiley & Sons Press, Hoboken, 2003).
    35. 35)
      • 20. Xu, L., Wang, M., Zhou, Y., et al: ‘Effect of silicone gel on the reliability of heavy aluminium wire bond for power module during thermal cycling test in electronic components and technology’. Electronic Components and Technology Conf. (ECTC), May 2016, vol. 32, no. 5, pp. 37773786.
    36. 36)
      • 12. Yang, S., Xiang, D., Bryant, A.P., et al: ‘Condition monitoring for device reliability in power electronic converters: a review’, IEEE Trans. Power Electron., 2010, 25, (11), pp. 27342752.
    37. 37)
      • 7. Zhou, Q., Xue, S., Li, J., et al: ‘Evaluation of wind power converter reliability considering multi-time scale and mission profiles in high voltage engineering and application’. Proc. Int. Conf. Power Electron, Chengdu, China, September 2016.
    38. 38)
      • 44. Yun, C., Malberti, P., Ciappa, M., et al: ‘Thermal component model for electro-thermal analysis of IGBT module systems, advanced packaging’, IEEE Trans. Power Electron., 2001, 4, (3), pp. 401406.
    39. 39)
      • 36. Wang, Z., Tian, B., Qiao, W., et al: ‘Real time aging monitoring for IGBT modules using case temperature’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 11681178.
    40. 40)
      • 32. Bęczkowski, S., Ghimre, P., Ruiz de Vega, A., et al: ‘Online Vce measurement method for wear-out monitoring of high power IGBT modules’. Proc. Int. Conf. EPE, Lille, France, September 2013.
    41. 41)
      • 25. Katsis, D.C., van Wyk, J.D.: ‘Thermal, mechanical, and electrical study of voiding in the solder die-attach of power MOSFETs’, IEEE Trans. Compon. Packag. Technol., 2006, 29, (1), pp. 127136.
    42. 42)
      • 27. Chang, L.: ‘Development of a series of optically isolated and fibre-optic coupled gate drivers for medium and high power IGBTs’. Proc. Int. Conf. Large Engineering Systems, Power Engineering, Quebec, Canada, 2003.
    43. 43)
      • 45. Kojima, T., Yamada, Y., Ciappa, M., et al: ‘A novel electro-thermal simulation approach of power IGBT modules for automotive traction applications’, R&D Rev. Toyota CRDL, 2016, 39, (4), pp. 2732.
    44. 44)
      • 13. Ohring, M., Kasprzak, L.: ‘Reliability and failure of electronic materials and devices’ (Academic Press, London, 2014).
    45. 45)
      • 65. Xiang, L., Ran Tavner, P., Bryant, A., et al: ‘Monitoring solder fatigue in a power module using case-above-ambient temperature rise’, IEEE Trans., 2011, 47, (6), pp. 25782591.
    46. 46)
      • 48. Fratelli, L., Giannini, G., Cascone, B., et al: ‘Reliability test of power IGBT's for railway traction’. Proc. Int. Conf. Power Electronics and Applications, 1999.
    47. 47)
      • 41. Zhou, S., Zhou, L., Yu, L., et al: ‘Monitoring chip fatigue in an IGBT module based on grey relational analysis’, Microelectron. Reliab., 2016, 56, pp. 4952.
    48. 48)
      • 10. Chamorro, L., Porte-Agel, F.: ‘Turbulent flow inside and above a wind farm: a wind-tunnel study’, Energies, 2011, 4, (11), pp. 19161936.
    49. 49)
      • 21. Borowy, B., Salameh, Z.: ‘Dynamic response of a stand-alone wind energy conversion system with battery energy storage to a wind gus’, IEEE Trans. Energy Convers., 1997, 12, (1), pp. 7378.
    50. 50)
      • 17. Ciappa, M.: ‘Selected failure mechanisms of modern power modules’, Microelectron. Reliab., 2002, 42, (4), pp. 653667.
    51. 51)
      • 38. Barlini, D., Ciappa, M., Mermet-Guyennet, M.: ‘Measurement of the transient junction temperature in MOSFET devices under operating conditions’, Microelectron. Reliab., 2007, 47, (9–11), pp. 17071712.
    52. 52)
      • 24. Do, M., Auge, J., Lesaint, O.: ‘Optical measurement of partial discharges in silicone gel under repetitive pulse voltage’. Electrical Insulating Materials, 2005, pp. 360363.
    53. 53)
      • 22. Sadik, D.-P., Nee, H.-P., Giezendanner, F.: ‘Humidity testing of SiC power MOSFETs’. Proc. Int. Conf. IPEMC-ECCE, Hefei, China, July 2016.
    54. 54)
      • 50. Che, F.X., Pang, J.H.L.: ‘Fatigue reliability analysis of Sn–Ag–Cu solder joints subject to thermal cycling’, IEEE Trans. Device Mater. Reliab., 2013, 13, (1), pp. 3649.
    55. 55)
      • 56. Perpiñà, X., Navarro, L., Jordà, X., et al: ‘Reliability and lifetime prediction for IGBT modules in railway traction chains’. Reliability and Safety in Railway, INTCH, 2012, pp. 193202.
    56. 56)
      • 46. Bahman, A.S., Ma, K., Ghimire, P., et al: ‘A 3-D-lumped thermal network model for long-term load profiles analysis in high-power IGBT modules’, IEEE Power Electron., 2016, 4, (3), pp. 10501063.
    57. 57)
      • 55. Luo, H., Chen, Y., Sun, P., et al: ‘Junction temperature extraction approach with turn-off delay time for high-voltage high-power IGBT modules’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 51225132.
    58. 58)
      • 35. Zhou, L., Zhou, S., Xu, M.: ‘Investigation of gate voltage oscillations in an IGBT module after partial bond wires lift-off’, Microelectron. Reliab., 2013, 53, (2), pp. 282287.
    59. 59)
      • 37. Baker, N., Dupont, L., Munk-Nielsen, S., et al: ‘IR camera validation of IGBT junction temperature measurement via peak gate current’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 30993111.
    60. 60)
      • 18. Bayerer, R., Herrmann, T., Licht, T.L.J., et al: ‘Model for power cycling lifetime of IGBT modules-various factors influencing lifetime’. Integrated Power Systems (CIPS), 2008, pp. 16.
    61. 61)
      • 54. Loh, W.S., Agyakwa, P.A., Johnson, C.M., et al: ‘Thick Al ribbon interconnects: a feasible solution for power devices packaging’. Symp. Microelectron, Providence, RI, 2008, pp. 10561063.
    62. 62)
      • 53. Coquery, G., Lallemand, R.: ‘Failure criteria for long term accelerated power cycling test linked to electrical turn off SOA on IGBT module’. A 4000 h test on 1200 A–3300 V module with AlSiC base plate’, Microelectron. Reliab., 2002, 40, (8–10), pp. 16651670.
    63. 63)
      • 39. Xue, P., Fu, G., Zhang, D.: ‘Modeling inductive switching characteristics of high-speed buffer layer IGBT’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 30753087.
    64. 64)
      • 62. Takashi, K., Yamada, Y., Ciappa, M., et al: ‘A novel electro-thermal simulation approach of power IGBT modules for automotive traction applications’. Proc. Int. Conf. PCIM, Kitakyushu, Japan, 2017.
    65. 65)
      • 11. Han, B., McCluskey, P., Oh, H.: ‘Physics of failure, condition monitoring, and prognostics of insulated gate bipolar transistor modules: a review’, IEEE Trans. Power Electron., 2015, 30, (5), pp. 24132426.
    66. 66)
      • 15. Choi, U.-M., Jørgensen, S., Blaabjerg, F.: ‘Advanced accelerated power cycling test for’, IEEE Trans. Power Electron., 2016, 31, (12), pp. 83718386.
    67. 67)
      • 23. Sadik, D., Nee, H., Giezendanner, F., et al: ‘Humidity testing of SiC power MOSFETs’. Power Electronics and Motion Control Conf. (IPEMC-ECCE Asia), May 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0477
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0477
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading