access icon free Two-stage glowworm swarm optimisation for economical operation of hydropower station

This study proposes a two-stage glowworm swarm optimisation (GSO) algorithm for the economical operation of the inner plant of a hydropower station. Binary GSO and real-coded GSO (RCGSO) algorithms are applied with different types of encodings to solve the unit commitment sub-problem and the economic load distribution (ELD) sub-problem, respectively. Moreover, an improved dynamic patching mechanism is developed to avoid invalid calculations and enrich the diversity of the solutions. A luciferin transfer mechanism helps the algorithm escape the local optimum and a local research mechanism enhances the diversity of the solution space by selecting from among the derived solutions. The RCGSO algorithm uses a variable-step mechanism to avoid missing the optimal solution. In comparison with the genetic algorithm and particle swarm optimisation, the RCGSO is significantly robust and provides better solutions to ELD sub-problems. Numerical simulations exhibited the superiority of the two-stage GSO algorithm in terms of stably and quickly solving the economical operation problem of hydropower stations.

Inspec keywords: load distribution; hydroelectric power stations; power generation economics; optimisation; numerical analysis

Other keywords: genetic algorithm; economic load distribution; improved dynamic patching mechanism; real-coded glowworm swarm optimisation algorithm; ELD; RCGSO algorithm; particle swarm optimisation; numerical simulation; economical operation; two-stage glowworm swarm optimisation algorithm; variable-step mechanism; hydropower station; luciferin transfer mechanism; two-stage GSO algorithm

Subjects: Hydroelectric power stations and plants; Optimisation techniques; Other numerical methods; Power system management, operation and economics

References

    1. 1)
      • 16. Kazarlis, S.A., Bakirtzis, A.G., Petridis, V.A.: ‘A genetic algorithm solution to the unit commitment problem’, IEEE Trans. Power Syst., 1996, 11, (1), pp. 8392.
    2. 2)
      • 21. Simopoulos, D.N., Kavatza, S.D., Vournas, C.D.: ‘Unit commitment by an enhanced simulated annealing algorithm’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 6876.
    3. 3)
      • 30. Yang, Y., Zhou, Y.Q.: ‘Glowworm swarm optimisation algorithm for solving numerical integral’, Intell. Comput. Inf. Sci., 2011, 134, pp. 389394.
    4. 4)
      • 7. Hobbs, W.J., Hermon, G., Warner, S., et al: ‘An enhanced dynamic programming approach for unit commitment’, IEEE Trans. Power Syst., 1988, 3, (3), pp. 12011205.
    5. 5)
      • 11. Cohen, A.I., Yoshimura, M.: ‘A branch-and-bound algorithm for unit commitment’, IEEE Trans. Power Syst., 1983, 102, (2), pp. 444451.
    6. 6)
      • 33. Huang, K., Zhou, Y.Q.: ‘A novel chaos glowworm swarm optimisation algorithm for optimisation functions’. 7th Int. Conf. on Intelligent Computing (ICIC 2011), 2012, vol. 6840, pp. 426434.
    7. 7)
      • 1. Bard, J.F.: ‘Short-term scheduling of thermal electric generators using Lagrangian relaxation’, Oper. Res., 1988, 36, (5), pp. 756766.
    8. 8)
      • 6. Snyder, W.L., Powell, H.D., Rayburn, J.C.: ‘Dynamic programming approach to unit commitment’, IEEE Trans. Power Syst., 1987, 2, (2), pp. 339348.
    9. 9)
      • 26. Vaisakh, K., Srinivas, L.R.: ‘Evolving ant colony optimisation based unit commitment’, Appl. Soft Comput., 2011, 11, (2), pp. 28632870.
    10. 10)
      • 8. Turgeon, A.: ‘Optimal scheduling of thermal generating units’, IEEE Trans. Autom. Control, 1978, 23, (6), pp. 10001005.
    11. 11)
      • 35. Jayakumar, D.N., Venkatesh, P.: ‘Glowworm swarm optimisation algorithm with topsis for solving multiple objective environmental economic dispatch problem’, Appl. Soft Comput., 2014, 23, pp. 375386.
    12. 12)
      • 40. Li, Y.H., Zhan, Z.H., Lin, S.J., et al: ‘Competitive and cooperative particle swarm optimisation with information sharing mechanism for global optimisation problems’, Inf. Sci., 2015, 293, pp. 370382.
    13. 13)
      • 41. Krishnanand, K.N., Ghose, D.: ‘Chasing multiple mobile signal sources: a glowworm swarm optimization approach’. Third Indian Int. Conf. on Artificial Intelligence (IICAI 07), Pune, India, 2007.
    14. 14)
      • 9. Dillon, T.S., Edwin, K.W., Kochs, H.D., et al: ‘Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination’, IEEE Trans. Power Syst., 1978, 6, (97), pp. 21542166.
    15. 15)
      • 22. Ting, T.O., Rao, M.V. C., Loo, C.K.: ‘A novel approach for unit commitment problem via an effective hybrid particle swarm optimisation’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 411418.
    16. 16)
      • 27. Krishnanand, K.N., Ghose, D.: ‘Detection of multiple source locations using a glowworm metaphor with applications to collective robotics’. Proc. IEEE Swarm Intelligence Symp., 2005 (SIS 2005). 2005, 2005, pp. 8491.
    17. 17)
      • 15. Rajan, C., Christober, A.: ‘Hydro-thermal unit commitment problem using simulated annealing embedded evolutionary programming approach’, Electr. Power Energy Syst., 2011, 33, (4), pp. 939946.
    18. 18)
      • 4. Peterson, W.L., Brammer, S.R.: ‘A capacity based Lagrangian relaxation unit commitment with ramp rate constraints’, IEEE Trans. power Syst., 1995, 10, (2), pp. 10771084.
    19. 19)
      • 25. Simon, S.P., Padhy, N.P., Anand, R.S.: ‘An ant colony system approach for unit commitment problem’, Electr. Power Energy Syst., 2006, 28, (5), pp. 315323.
    20. 20)
      • 39. Saeed, M.O.B., Zerguine, A., Zummo, S.A.: ‘A variable step-size strategy for distributed estimation over adaptive networks’, EURASIP J. Adv. Signal Process., 2013, 2013, (1), p. 135.
    21. 21)
      • 20. Mantawy, A.H., Abdel-Magid, Y.L., Selim, S.Z.: ‘A simulated annealing algorithm for unit commitment’, IEEE Trans. Power Syst., 1998, 13, (1), pp. 197204.
    22. 22)
      • 10. Finardi, E.C., Da Silva, E.L.: ‘Unit commitment of single hydroelectric plant’, Elect. Power Syst. Res., 2005, 75, (2), pp. 116123.
    23. 23)
      • 23. Zhao, B., Guo, C.X., Bai, B.R., et al: ‘An improved particle swarm optimisation algorithm for unit commitment’, Elect. Power Energy Syst., 2006, 28, (7), pp. 482490.
    24. 24)
      • 31. Li, M.W., Wang, X., Gong, Y., et al: ‘Binary glowworm swarm optimisation for unit commitment’, J. Mod. Power Syst. Cle., 2014, 2, (4), pp. 357365.
    25. 25)
      • 37. Steane, A.M.: ‘Error correcting codes in quantum theory’, Phys. Rev. Lett., 1996, 77, (5), pp. 793797.
    26. 26)
      • 5. Allen, R.B., Bridgeman, S.G.: ‘Dynamic programming in hydropower scheduling’, J. Water Resour. Plan. Manage., 1986, 112, (3), pp. 339353.
    27. 27)
      • 36. Hamming, R.W.: ‘Error detecting and error correcting codes’, Bell Labs Tech. J., 1950, 29, (2), pp. 147160.
    28. 28)
      • 28. Krishnanand, K.N., Ghose, D.: ‘Glowworm swarm optimisation for simultaneous capture of multiple local optima of multimodal functions’, Swarm Intell., 2009, 3, (2), pp. 87124.
    29. 29)
      • 14. Sinha, N., Chakrabarti, R., Chattopadhyay, P.K.: ‘Evolutionary programming techniques for economic load dispatch’, IEEE Trans. Evol. Comput., 2003, 7, (1), pp. 8394.
    30. 30)
      • 17. Abido, M.A.: ‘A niched pareto genetic algorithm for multiobjective environmental/ economic dispatch’, Electr. Power Energy Syst., 2003, 25, (2), pp. 97105.
    31. 31)
      • 34. Yepes, V., Martí, J.V., García-Segura, T.: ‘Cost and CO2 emission optimisation of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm’, Autom. Constr., 2015, 49, (part A), pp. 123134.
    32. 32)
      • 29. Gong, Q.Q., Zhou, Y.Q., Yang, Y.: ‘Artificial glowworm swarm optimisation algorithm for solving 0-1 knapsack problem’, Adv. Mater.Res., 2011, 143, pp. 166171.
    33. 33)
      • 24. Valenzuela, J., Smith, A.E.: ‘A seeded memetic algorithm for large unit commitment problems’, J. Heuristics, 2002, 8, (2), pp. 173195.
    34. 34)
      • 19. Lin, W.-M., Cheng, F.-S., Tsay, M.-T.: ‘An improved tabu search for economic dispatch with multiple minima’, IEEE Trans. Power Syst., 2002, 17, (1), pp. 108112.
    35. 35)
      • 12. Huang, K.Y., Yang, H.T., Huang, C.L.: ‘A new thermal unit commitment approach using constraint logic programming’, IEEE Trans. Power Syst., 1998, 13, (3), pp. 936945.
    36. 36)
      • 32. Chen, R.Z.: ‘Improved self-adaptive glowworm swarm optimisation algorithm’, Appl. Mech. Mater., 2014, 519, pp. 798801.
    37. 37)
      • 13. Juste, K.A., Kita, H., Tanaka, E., et al: ‘An evolutionary programming solution on the unit commitment problem’, IEEE Trans. Power Syst., 1999, 14, (4), pp. 14521459.
    38. 38)
      • 3. Baldick, R.: ‘The generalized unit commitment problem’, IEEE Trans. Power Syst., 1995, 10, (1), pp. 465475.
    39. 39)
      • 38. Buras, N.: ‘Scientific allocation of water resources’ (American Elsevier Publishing Company Inc., New York, USA, 1972).
    40. 40)
      • 2. Oliveira, P., Blair-Fish, J., McKee, S., et al: ‘Parallel Lagrangian relaxation in power scheduling’, Comput. Syst. Eng., 1992, 3, (5), pp. 609612.
    41. 41)
      • 18. Mantawy, A.H., Abdel-Magid, Y.L., Selim, S.Z.: ‘Unit commitment by tabu search’, IEEE Proc. Gener. Transm. Distrib., 1998, 145, (1), pp. 5664.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0466
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0466
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading