http://iet.metastore.ingenta.com
1887

Simplex simplified swarm optimisation for the efficient optimisation of parameter identification for solar cell models

Simplex simplified swarm optimisation for the efficient optimisation of parameter identification for solar cell models

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The development and application of photovoltaic (PV) systems are becoming increasingly more important as the global need for energy resources expands and environmental protection becomes more highly valued. Parameters of PV models can be identified by measuring their current–voltage (IV) characteristic curves. Identifying these parameters quickly, accurately and reliably is critical in determining the operating status of in situ PV arrays and, in turn, optimising solar energy conversions. To achieve both fast and accurate parameter identification with high reliability, a new algorithm called algorithm based on SSO and Nelder–Mead simplex (NMS) (SSSO) based on the simplified swarm optimisation (SSO) and the NMS is proposed in this study. To demonstrate the performance of SSSO in identifying solar cell system parameters, its performance on the single diode model and the double diode model was compared with existing algorithms in terms of both fitness value and run time. The experiment results indicate that SSSO outperformed the compared algorithms in both run time and standard deviation of fitness value.

References

    1. 1)
      • 1. Jordehi, A.R.: ‘Parameter estimation of solar photovoltaic (PV) cells: a review’, Renew. Sustain. Energy Rev., 2016, 61, pp. 354371.
    2. 2)
      • 2. Khalid, M.S., Abido, M.A.: ‘A novel and accurate photovoltaic simulator based on seven-parameter model’, Electr. Power Syst. Res., 2014, 116, pp. 243251.
    3. 3)
      • 3. Jervase, J.A., Bourdoucen, H., Al-Lawati, A.: ‘Solar cell parameter extraction using genetic algorithms’, Meas. Sci. Technol., 2001, 12, (11), pp. 1922.
    4. 4)
      • 4. Press, W.H., Teukolsky, S.A., Vetterling, W.T., et al: ‘Numerical recipes’ (Cambridge University Press, Cambridge, 1987).
    5. 5)
      • 5. Zagrouba, M., Sellami, A., Bouaïcha, M., et al: ‘Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction’, Sol. Energy, 2010, 84, (5), pp. 860866.
    6. 6)
      • 6. Ye, M., Wang, X., Xu, Y.: ‘Parameter extraction of solar cells using particle swarm optimization’, J. Appl. Phys., 2009, 105, (9), pp. 094502094508.
    7. 7)
      • 7. Bana, S., Saini, R.P.: ‘Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints’, Renew. Energy, 2017, 101, pp. 12991310.
    8. 8)
      • 8. Villalva, M.G., Gazoli, J.R., Filho, E.R.: ‘Comprehensive approach to modeling and simulation of photovoltaic arrays’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 11981208.
    9. 9)
      • 9. Oliva, D., Cuevas, E., Pajares, G.: ‘Parameter identification of solar cells using artificial bee colony optimization’, Energy, 2014, 72, pp. 93102.
    10. 10)
      • 10. Askarzadeh, A., Rezazadeh, A.: ‘Parameter identification for solar cell models using harmony search-based algorithms’, Sol. Energy, 2012, 86, (11), pp. 32413249.
    11. 11)
      • 11. Rajasekar, N., Neeraja, K.K., Venugopalan, R.: ‘Bacterial foraging algorithm based solar PV parameter estimation’, Sol. Energy, 2013, 97, pp. 255265.
    12. 12)
      • 12. Alam, D.F., Yousri, D.A., Eteiba, M.B.: ‘Flower pollination algorithm based solar PV parameter estimation’, Energy Convers. Manage., 2015, 101, pp. 410422.
    13. 13)
      • 13. Easwarakhanthan, T., Bottin, J., Bouhouch, I., et al: ‘Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers’, Int. J. Sol. Energy, 1986, 4, (1), pp. 112.
    14. 14)
      • 14. Elbaset, A.A., Ali, H., Abd-El Sattar, M.: ‘Novel seven-parameter model for photovoltaic modules’, Sol. Energy Mater. Sol. Cells, 2014, 130, (3), pp. 442455.
    15. 15)
      • 15. Yuan, X., Xiang, Y., He, Y.: ‘Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm’, Sol. Energy, 2014, 108, pp. 238251.
    16. 16)
      • 16. Askarzadeh, A., Rezazadeh, A.: ‘Artificial bee swarm optimization algorithm for parameters identification of solar cell models’, Appl. Energy, 2013, 102, pp. 943949.
    17. 17)
      • 17. AlRashidi, M., AlHajri, M., El-Naggar, K., et al: ‘A new estimation approach for determining the I–V characteristics of solar cells’, Sol. Energy, 2011, 85, (7), pp. 15431550.
    18. 18)
      • 18. El-Naggar, K., AlRashidi, M., AlHajri, M., et al: ‘Simulated annealing algorithm for photovoltaic parameters identification’, Sol. Energy, 2012, 86, (1), pp. 266274.
    19. 19)
      • 19. Babu, T.S., Ram, J.P., Sangeetha, K., et al: ‘Parameter extraction of two diode solar PV model using fireworks algorithm’, Sol. Energy, 2016, 140, pp. 265276.
    20. 20)
      • 20. Chen, Z., Wu, L., Lin, P., et al: ‘Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy’, Appl. Energy, 2016, 182, pp. 4757.
    21. 21)
      • 21. Gong, W., Cai, Z.: ‘Parameter extraction of solar cell models using repaired adaptive differential evolution’, Sol. Energy, 2013, 94, pp. 209220.
    22. 22)
      • 22. Chan, D.S.H., Phang, J.C.H.: ‘Analytical methods for the extraction of solar-cell single-and double-diode model parameters from IV characteristics’, IEEE Trans. Electron Devices, 2014, 86, pp. 32413249.
    23. 23)
      • 23. Saleem, H., Karmalkar, S.: ‘An analytical method to extract the physical parameters of a solar cell from four points on the illuminated curve’, IEEE Electron Device Lett., 2009, 30, pp. 349352.
    24. 24)
      • 24. Lun, S., Du, C., Yang, G., et al: ‘An explicit approximate I–V characteristic model of a solar cell based on pad approximants’, Sol. Energy, 2013, 92, pp. 147159.
    25. 25)
      • 25. Guo, L., Meng, Z., Sun, Y., et al: ‘Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm’, Energy Convers. Manage., 2016, 108, pp. 520528.
    26. 26)
      • 26. Niu, Q., Zhang, H., Li, K.: ‘An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models’, Int. J. Hydrogen Energy, 2014, 39, (8), pp. 38373854.
    27. 27)
      • 27. Chen, X., Yu, K., Du, W., et al: ‘Parameters identification of solar cell models using generalized oppositional teaching learning based optimization’, Energy, 2016, 99, pp. 170180.
    28. 28)
      • 28. Dkhichi, F., Oukarfi, B., Fakkar, A., et al: ‘Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing’, Sol. Energy, 2014, 110, pp. 781788.
    29. 29)
      • 29. AlHajri, M.F., El-Naggar, K.M., AlRashidi, M.R., et al: ‘Optimal extraction of solar cell parameters using pattern search’, Renew. Energy, 2012, 44, pp. 238245.
    30. 30)
      • 30. Batzelis, E.I., Papathanassiou, S.A.: ‘A method for the analytical extraction of the single-diode PV model parameters’, IEEE Trans. Sustain. Energy, 2016, 7, (2), PP. pp. 504512.
    31. 31)
      • 31. Piazza, M.C.D., Luna, M., Petrone, G.: ‘Translation of the single-diode PV model parameters identified by using explicit formulas’, IEEE J. Photovolt., 2017, 7, (4), pp. 10091016.
    32. 32)
      • 32. Accarino, J., Petrone, G., Ramos-Paja, C.A., et al: ‘Symbolic algebra for the calculation of the series and parallel resistances in PV module model’. IEEE Int. Conf. Clean Electrical Power (ICCEP), Alghero, Italy, June 2013.
    33. 33)
      • 33. Lin, P.J., Cheng, S.Y., Yeh, W.C., et al: ‘Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm’, Sol. Energy, 2017, 144, pp. 594603.
    34. 34)
      • 34. Askarzadeh, A., Coelho, L.D.S.: ‘Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach’, Energy Convers. Manage., 2015, 89, pp. 608614.
    35. 35)
      • 35. Yeh, W.C.: ‘A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems’, Expert Syst. Appl., 2009, 36, (5), pp. 91929200.
    36. 36)
      • 36. Yeh, W.C.: ‘Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm optimization’, IEEE Trans. Syst. Man Cybern. Syst. A, 2012, 42, (1), pp. 250261.
    37. 37)
      • 37. Yeh, W.C.: ‘Simplified swarm optimization in disassembly sequencing problems with learning effects’, Comput. Oper. Res., 2012, 39, (9), pp. 21682177.
    38. 38)
      • 38. Yeh, W.C.: ‘New parameter-free simplified swarm optimization for artificial neural network training and its application in the prediction of time series’, IEEE Trans. Neural Netw. Learn. Syst., 2013, 24, (4), pp. 661665.
    39. 39)
      • 39. Yeh, W.C.: ‘An improved simplified swarm optimization’, Knowl. Based Syst., 2015, 82, pp. 6069.
    40. 40)
      • 40. Yeh, W.C., Lai, C.M.: ‘Accelerated simplified swarm optimization with exploitation search scheme for data clustering’, PLoS One, 2015, 10, (9), p. e0137246.
    41. 41)
      • 41. Chang, W.W., Yeh, W.C., Huang, P.C.: ‘A hybrid immune-estimation distribution of algorithm for mining thyroid gland data’, Expert Syst. Appl., 2010, 37, (3), pp. 20662071.
    42. 42)
      • 42. Nelder, J.A., Mead, R.: ‘A simplex method for function minimization’, Comput. J., 1965, 7, pp. 308313.
    43. 43)
      • 43. Lagarias, J.C., Reeds, J.A., Wright, M.H., et al: ‘Convergence properties of the Nelder-Mead simplex method in low dimensions’, SIAM J. Optim., 1998, 9, (1), pp. 112147.
    44. 44)
      • 44. Yeh, W.C., Lin, P.J., Huang, C.L.: ‘Simplified swarm optimisation for the solar cell models parameter estimation problem’, IET Renew. Power Gener., 2017, 11, (8), pp. 11661173.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0308
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0308
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address