access icon free Efficient SPF approach based on regression and correction models for active distribution systems

This study proposes efficient methods for sequential power flow (SPF) analysis of distribution systems with intermittent photovoltaic (PV) units and fluctuated loads. The proposed methods are based on machine learning techniques; more specifically, they use a regression trees (RTs) algorithm to construct a model for voltage estimation. This model is trained using synthetic data generated by a number of PV generation and load demand scenarios. The SPF methods that utilise iterative techniques have a high computational burden. In turn, the proposed method, which is called SPF-RT, is fast and accurate. Furthermore, the authors combine SPF-RT with a correction method to develop a new method, called SPF-RTC, which significantly reduces the estimation error of the RT model. The proposed methods are tested using a 33-bus distribution test system interconnected with two PV units. To assess the performance of the proposed methods, they conducted several experiments at different resolutions of day/year data. The proposed methods are compared with the iterative SPF methods and validated using the OpenDSS software. The simulation results demonstrate that the proposed methods outperform the other methods in terms of the computational speed. The SPF-RT and SPF-RTC methods are useful for real-time assessment of distribution systems with PV units.

Inspec keywords: trees (mathematics); learning (artificial intelligence); regression analysis; iterative methods; photovoltaic power systems; power distribution; power engineering computing; load flow

Other keywords: active distribution systems; SPF-RTC method; SPF-RT method; load demand scenario; sequential power flow analysis; machine learning technique; estimation error; efficient SPF approach; SPF-RT; voltage estimation; intermittent PV units; regression tree algorithm; 33-bus distribution test system; regression model; SPF method; correction method; PV generation; iterative SPF method; RT algorithm; correction model; iterative technique; OpenDSS software; SPF analysis; intermittent photovoltaic unit

Subjects: Interpolation and function approximation (numerical analysis); Knowledge engineering techniques; Power engineering computing; Interpolation and function approximation (numerical analysis); Solar power stations and photovoltaic power systems; Combinatorial mathematics; Combinatorial mathematics; Distribution networks; Other topics in statistics; Other topics in statistics

References

    1. 1)
      • 8. Kawabe, K., Tanaka, K.: ‘Impact of dynamic behavior of photovoltaic power generation systems on short-term voltage stability’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 34163424.
    2. 2)
      • 15. Mather, B.A.: ‘Quasi-static time-series test feeder for PV integration analysis on distribution systems’. 2012 IEEE Power and Energy Society General Meeting, 2012, pp. 18.
    3. 3)
      • 5. Tonkoski, R., Turcotte, D., El-Fouly, T.H.M.: ‘Impact of high PV penetration on voltage profiles in residential neighborhoods’, IEEE Trans. Sustain. Energy, 2012, 3, (3), pp. 518527.
    4. 4)
      • 3. Kroposki, B., Johnson, B., Zhang, Y., et al: ‘Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy’, IEEE Power Energy Mag., 2017, 15, (2), pp. 6173.
    5. 5)
      • 14. Arritt, R.F., Dugan, R.C.: ‘Value of sequential-time simulations in distribution planning’. 2013 IEEE Rural Electric Power Conf. (REPC), 2013, pp. C21.
    6. 6)
      • 2. Samadi, P., Wong, V.W.S., Schober, R.: ‘Load scheduling and power trading in systems with high penetration of renewable energy resources’, IEEE Trans. Smart Grid, 2016, 7, (4), pp. 18021812.
    7. 7)
      • 10. Chidurala, A., Saha, T.K., Mithulananthan, N.: ‘Harmonic impact of high penetration photovoltaic system on unbalanced distribution networks – learning from an urban photovoltaic network’, IET Renew. Power Gener., 2016, 10, (4), pp. 485494.
    8. 8)
      • 37. Kashem, M.A., Ganapathy, V., Jasmon, G.B., et al: ‘A novel method for loss minimization in distribution networks’. Proc. IEEE Int. Conf. Electric Utility Deregulation Restructuring Power Technologies, 2000, pp. 251256.
    9. 9)
      • 28. Santos, S.F., Fitiwi, D.Z, Shafie-Khah, M., et al: ‘New multistage and stochastic mathematical model for maximizing RES hosting capacity – part i: problem formulation’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 304319.
    10. 10)
      • 29. Mahmoud, K., Yorino, N., Ahmed, A.: ‘Optimal distributed generation allocation in distribution systems for loss minimization’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 960969.
    11. 11)
      • 6. Mortazavi, H., Mehrjerdi, H., Saad, M., et al: ‘A monitoring technique for reversed power flow detection with high PV penetration level’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 22212232.
    12. 12)
      • 38. Southern California Edison: ‘Static load profiles’, 2010. Available at https://www.sce.com/wps/portal/home/regulatory/load-profiles, accessed 30 April 2017.
    13. 13)
      • 12. ‘OpenDSS’. Available at http://sourceforge.net/projects/electricdss/, accessed 30 April 2017.
    14. 14)
      • 21. Siano, P., Cecati, C., Yu, H., et al: ‘Real time operation of smart grids via FCN networks and optimal power flow’, IEEE Trans. Ind. Inf., 2012, 8, (4), pp. 944952.
    15. 15)
      • 32. Taleski, R., Rajicic, D.: ‘Energy summation method for energy loss computation in radial distribution networks’, IEEE Trans. Power Syst., 1996, 11, (2), pp. 11041111.
    16. 16)
      • 17. Mather, B.A., Shah, S., Norris, B.L., et al: ‘NREL/SCE high penetration PV integration project’. FY13 Annual Report, 2014.
    17. 17)
      • 35. Breiman, L., Friedman, J., Stone, C.J., et al: ‘Classification and regression trees’ (CRC Press, 1984).
    18. 18)
      • 7. Sheng, W., Liu, K., Liu, Y., et al: ‘Reactive power coordinated optimisation method with renewable distributed generation based on improved harmony search’, IET Gener. Transm. Distrib., 2016, 10, (13), pp. 31523162.
    19. 19)
      • 31. Shivashankar, S., Mekhilef, S., Mokhlis, H., et al: ‘Mitigating methods of power fluctuation of photovoltaic (PV) sources – a review’, Renew. Sustain. Energy Rev., 2016, 59, pp. 11701184.
    20. 20)
      • 11. Denholm, P., Margolis, R.M.: ‘Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems’, Energy Policy, 2007, 35, (5), pp. 28522861.
    21. 21)
      • 36. Cheng, C.S., Shirmohammadi, D.: ‘A three-phase power flow method for real-time distribution system analysis’, IEEE Trans. Power Syst., 1995, 10, (2), pp. 671679.
    22. 22)
      • 26. Ding, M., Xu, Z., Wang, W., et al: ‘Review on China's large-scale PV integration: progress, challenges and recommendations’, Renew. Sustain. Energy Rev., 2016, 53, pp. 639652.
    23. 23)
      • 33. Quinlan, J.R.: ‘Induction of decision trees’, Mach. Learn., 1986, 1, (1), pp. 81106.
    24. 24)
      • 34. Mahmoud, K., Yorino, N.: ‘Robust quadratic-based BFS power flow method for multi-phase distribution systems’, IET. Gener. Transm. Distrib., 2016, 10, (9), pp. 22402250.
    25. 25)
      • 19. Boehme, T., Wallace, A.R., Harrison, G.P.: ‘Applying time series to power flow analysis in networks with high wind penetration’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 951957.
    26. 26)
      • 4. Reddy, S., Painuly, J.P.: ‘Diffusion of renewable energy technologies-barriers and stakeholders perspectives’, Renew. Energy, 2004, 29, (9), pp. 14311447.
    27. 27)
      • 30. Woyte, A., Van Thong, V., Belmans, R., et al: ‘Voltage fluctuations on distribution level introduced by photovoltaic systems’, IEEE Trans. Energy Convers., 2006, 21, (1), pp. 202209.
    28. 28)
      • 27. Lim, Y.S., Tang, J.H.: ‘Experimental study on flicker emissions by photovoltaic systems on highly cloudy region: a case study in Malaysia’, Renew. Energy, 2014, 64, pp. 6170.
    29. 29)
      • 18. Pagnetti, A., Delille, G.: ‘A simple and efficient method for fast analysis of renewable generation connection to active distribution networks’, Electr. Power Syst. Res., 2015, 125, pp. 133140.
    30. 30)
      • 16. Broderick, R.J., Quiroz, J.E., Reno, M.J., et al: ‘Time series power flow analysis for distribution connected PV generation’. (Sandia National Laboratories, 2013) SAND2013–0537.
    31. 31)
      • 23. Mahmud, N., Zahedi, A.: ‘Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation’, Renew. Sustain. Energy Rev., 2016, 64, pp. 582595.
    32. 32)
      • 1. Adefarati, T., Bansal, R.C.: ‘Integration of renewable distributed generators into the distribution system: a review’, IET Renew. Power Gener., 2016, 10, (7), pp. 873884.
    33. 33)
      • 22. Ellabban, O., Abu-Rub, H., Blaabjerg, F.: ‘Renewable energy resources: current status, future prospects and their enabling technology’, Renew. Sustain. Energy Rev., 2014, 39, pp. 748764.
    34. 34)
      • 9. Pezeshki, H., Wolfs, P.J., Ledwich, G.: ‘Impact of high PV penetration on distribution transformer insulation life’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 12121220.
    35. 35)
      • 13. Montenegro, D., Dugan, R., Ramos, G.: ‘Harmonics analysis using sequential-time simulation for addressing smart grid challenges’. Int. Conf. Electricity Distribution, Lyon, France, June 2015, pp. 1518.
    36. 36)
      • 20. López, C.D., Idlbi, B., Stetz, T., et al: ‘Shortening quasi-static time-series simulations for cost–benefit analysis of low voltage network operation with photovoltaic feed-in’. Power Energy Student Summit 2015, Dortmund Germany, 13th–14th January 2015.
    37. 37)
      • 24. Fantidis, J.G., Bandekas, D.V., Potolias, C., et al: ‘Cost of PV electricity – case study of Greece’, Sol. Energy, 2013, 91, pp. 120130.
    38. 38)
      • 25. Ghafoor, A., Munir, A.: ‘Design and economics analysis of an off-grid PV system for household electrification’, Renew. Sustain. Energy Rev., 2015, 42, pp. 496502.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0300
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0300
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading