access icon free Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser

In this study, optimum values of unknown seven parameters of proton exchange membrane fuel cells (PEMFCs) stack are generated for the sake of appropriate modelling. An objective function is adopted to minimise the sum of square errors (SSE) between the experimental data and the corresponding estimated results. A novel application of grasshopper optimisation algorithm (GOA) is engaged to minimise the SSE subjects to set of inequality constraints. Three study cases of typical commercial PEMFCs stacks are demonstrated and verified under various steady-state operating scenarios. Necessary subsequent comparisons to new results by others found in updated state-of-the-art are made. Sensitivity analysis of defined parameters is carried out. It is found that the PEMFC model is susceptible to the deviations of optimised parameters as the errors are substantially disturbed which signifies the value of the GOA-based method. In addition, performance measures to indicate the robustness of the GOA-based methodology are pointed out. At this moment, dynamic model of the stack is addressed and incorporated to demonstrate its dynamic response. Detailed MATLAB/SIMULINK simulation model is implemented to study the PEMFC dynamic performance. The simulated test cases emphasise the viability and effectivity of the GOA-based procedure in steady-state and dynamic simulations.

Inspec keywords: proton exchange membrane fuel cells; optimisation; sensitivity analysis

Other keywords: MATLAB-SIMULINK simulation model; SSE; proton exchange membrane fuel cell stack; sensitivity analysis; electrical characterisation; PEMFC; GOA-based method; grasshopper optimisation algorithm; sum of square error

Subjects: Fuel cells; Optimisation techniques; Fuel cells

References

    1. 1)
      • 22. Sun, Z., Wang, N., Bi, Y., et al: ‘Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm’, Energy, 2015, 90, pp. 13341341, doi: 10.1016/j.energy.2015.06.081.
    2. 2)
      • 4. Mann, R.F., Amphlett, J.C., Hooper, M.A.I, et al: ‘Development and application of a generalised steady-state electrochemical model for a PEM fuel cell’, J. Power Sources, 2000, 86, (12), pp. 173180, doi: 10.1016/S0378-7753(99)00484-X.
    3. 3)
      • 20. Askarzadeh, A., Rezazadeh, A.: ‘Optimization of PEMFC model parameters with a modified particle swarm optimization’, Int. J. Energy Res., 2011, 35, (14), pp. 12581265, doi:10.1002/er.1787.
    4. 4)
      • 6. Sharaf, O.Z., Orhan, M.F.: ‘An overview of fuel cell technology: fundamentals and applications’, Renew. Sustain. Energy Rev., 2014, 32, pp. 810853, doi: 10.1016/j.rser.2014.01.012.
    5. 5)
      • 36. ‘Mathworks file exchange’. Available athttp://www.mathworks.com/matlabcentral/fileexchange/61421-grasshopper-optimisation-algorithm--goa-, accessed 5 March 2017.
    6. 6)
      • 40. Abd El-Monem, A.A., Azmy, A.M., Mahmoud, S.A.: ‘Effect of process parameters on the dynamic behavior of polymer electrolyte membrane fuel cells for electric vehicle applications’, Ain Shams Eng. J., 2014, 5, pp. 7584, doi:10.1016/j.asej.2013.05.001.
    7. 7)
      • 35. Springer, T.E., Zawodzinski, T.A., Gottesfeld, S.: ‘Polymer electrolyte fuel cell model’, J. Electrochem. Soc., 1991, 138, (8), pp. 23342342, doi: 10.1149/1.2085971.
    8. 8)
      • 2. Motapon, S.N., Tremblay, O., Dessaint, L.-A.: ‘Development of a generic fuel cell model: application to a fuel cell vehicle simulation’, Int. J. Power Electron., 2012, 4, (6), pp. 505522, doi: 10.1504IJPELEC2012.05242.
    9. 9)
      • 32. Ali, M., El-Hameed, M.A., Farahat, M.A.: ‘Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer’, Renew. Energy, 2017, 111, pp. 455462, doi: 10.1016/j.renene.2017.04.036.
    10. 10)
      • 1. Guarnieri, M., Negro, E., Noto, V., et al: ‘A selective hybrid stochastic strategy for fuel-cell multi-parameter identification’, J. Power Sources, 2016, 332, pp. 249264, doi: 10.1016/j.jpowsour.2016.09.131.
    11. 11)
      • 24. Gong, W., Yan, X., Liu, X., et al: ‘Parameter extraction of different fuel cell models with transferred adaptive differential evolution’, Energy, 2015, 86, pp. 139151, doi:10.1016/j.energy.2015.03.117.
    12. 12)
      • 30. Niu, Q., Zhang, L., Li, K.: ‘A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cell’, Energy Convers. Manage., 2014, 86, pp. 11731185, doi:10.1016/j.enconman.2014.06.026.
    13. 13)
      • 34. Saremi, S., Mirjalili, S., Lewis, A.: ‘Grasshopper optimisation algorithm: theory and application’, Adv. Eng. Softw., 2017, 105, pp. 3047, doi: 10.1016/j.advengsoft.2017.01.004.
    14. 14)
      • 33. Wolpert, D.H., Macready, W.G.: ‘No free lunch theorems for optimization’, IEEE Trans. Evol. Comput., 1997, 1, (1), pp. 6782, doi:10.1109/4235.585893.
    15. 15)
      • 11. Primucci, M., Ferrer, L., Serra, M., et al: ‘Characterisation of fuel cell state using electrochemical impedance spectroscopy analysis’. 1st Iberian Symp. on Hydrogen, Fuel Cells and Advanced Batteries, Bilbao, Spain, 11 July 2008, pp. 126, EHU.
    16. 16)
      • 26. Askarzadeh, A., Rezazadeh, A.: ‘An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model’, IEEE Trans. Ind. Electron., 2012, 59, (9), pp. 34733480, doi: 10.1109/TIE.2011.2172173.
    17. 17)
      • 29. Dai, C., Chen, W., Cheng, Z., et al: ‘Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC)’, Int. J. Electr. Power Energy Syst., 2011, 33, (3), pp. 369376, doi:10.1016/j.ijepes.2010.08.032.
    18. 18)
      • 38. Gibbons, J.D., Chakraborti, S.: ‘Nonparametric statistical inference’ (Chapman & Hall/CRC Press, Taylor & Francis Group, Boca Raton, FL, 2011, 5th edn). ISBN: 9781420077612.
    19. 19)
      • 19. Li, Q., Chen, W., Wang, Y., et al: ‘Parameter identification for PEM fuel-cell mechanism model based on effective informed adaptive particle swarm optimization’, IEEE Trans. Ind. Electron., 2011, 58, (6), pp. 24102419, doi: 10.1109/TIE.2010.2060456.
    20. 20)
      • 16. Priya, K., Babu, T.S., Balasubramanian, K., et al: ‘A novel approach for fuel cell parameter estimation using simple genetic algorithm’, Sustain. Energy Technol. Assess., 2015, 12, pp. 4652, doi: 10.1016/j.seta.2015.09.001.
    21. 21)
      • 12. Taleb, M.A., Béthouxb, O.B., Godoy, E.: ‘Identification of a PEMFC fractional order model’, Int. J. Hydrogen Energy, 2017, 42, pp. 14991509, doi: 10.1016/j.ijhydene.2016.07.056.
    22. 22)
      • 5. Correa, J.M., Farret, F.A., Canha, L.N., et al: ‘An electrochemical-based fuel-cell model suitable for electrical engineering automation approach’, IEEE Trans. Ind. Electron., 2004, 51, (5), pp. 11031112, doi:10.1109/TIE.2004.834972.
    23. 23)
      • 8. Abdollahzadeh, M., Pascoa, J., Ranjbar, A., et al: ‘Analysis of PEM (polymer electrolyte membrane) fuel cell cathode two-dimensional modeling’, Energy, 2014, 68, pp. 478494, doi:10.1016/j.energy.2014.01.075.
    24. 24)
      • 13. Sharifi Asl, S.M.S., Rowshanzamir, S., Eikani, M.H.: ‘Modelling and simulation of the steady-state and dynamic behavior of a PEM fuel cell’, Energy, 2010, 35, (4), pp. 16331646, doi: 10.1016/j.energy.2009.12.010.
    25. 25)
      • 9. Danzer, M.A., Hofer, E.P.: ‘Electrochemical parameter identification – an efficient method for fuel cell impedance characterization’, J. Power Sources, 2008, 183, (1), pp. 5561, doi: 10.1016/j.jpowsour.2008.04.071.
    26. 26)
      • 21. Gong, W., Cai, Z.: ‘Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution’, Energy, 2013, 59, pp. 356364, doi: 10.1016/j.energy.2013.07.005.
    27. 27)
      • 15. Xue, X.D., Cheng, K.W.E., Sutanto, D.: ‘Unified mathematical modelling of steadystate and dynamic voltage-current characteristics for PEM fuel cells’, J. Electrochim. Acta, 2006, 52, (3), pp. 11351144, doi: 10.1016/j.electacta.2006.07.011.
    28. 28)
      • 27. Niu, Q., Zhang, H., Li, K.: ‘An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models’, Int. J. Hydrogen Energy, 2014, 39, (8), pp. 38373854, doi: 10.1016/j.ijhydene.2013.12.110.
    29. 29)
      • 37. ‘The Math Works Press’. Available athttp://www.mathworks.com/, accessed 9 May 2017.
    30. 30)
      • 31. Alotto, P., Guarnieri, M.: ‘Stochastic methods for parameter estimation of multi-physics models of fuel cells’, IEEE Trans. Magn., 2014, 50, (2), pp. 701704, doi: 10.1109/TMAG.2013.2283889.
    31. 31)
      • 14. Corrêa, J.M., Farret, F.A., Gomes, J.R., et al: ‘Simulation of fuel-cell stacks using a computer-controlled power rectifier with the purposes of actual high-power injection applications’, IEEE Trans. Ind. Appl., 2003, 39, (4), pp. 11361142, doi:10.1109/TIA.2003.814548.
    32. 32)
      • 3. Úbeda, D., Pinar, F.J., Canizares, P., et al: ‘An easy parameter estimation procedure for modeling a HT-PEMFC’, Int. J. Hydrogen Energy, 2012, 37, (15), pp. 1130811320, doi: 10.1016/j.ijhydene.2012.04.157.
    33. 33)
      • 23. Chakraborty, U.K., Abbott, T.E., Das, S.K.: ‘PEM fuel cell modeling using differential evolution’, Energy, 2012, 40, (1), pp. 387399, doi: 10.1016/j.energy.2012.01.039.
    34. 34)
      • 18. Ohenoja, M., Leiviska, K.: ‘Validation of genetic algorithm results in a fuel cell model’, Int. J. Hydrogen Energy, 2010, 35, (22), pp. 1261812625, doi: 10.1016/j.ijhydene.2010.07.129.
    35. 35)
      • 39. ‘Ned Stack fuel cell technology’. Available athttp://www.fuelcellmarkets.com/content/images/articles/ps6.pdf, accessed 23 June 2017.
    36. 36)
      • 7. Wang, Y., Chen, K.S., Mishler, J., et al: ‘A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research’, Appl. Energy, 2011, 88, (4), pp. 9811007, doi: 10.1016/j.apenergy.2010.09.030.
    37. 37)
      • 25. Alireza, A., Alireza, R.: ‘Artificial immune system-based parameter extraction of proton exchange membrane fuel cell’, Int. J. Electr. Power Energy Syst., 2011, 33, (4), pp. 933938, doi:10.1016/j.ijepes.2010.12.036.
    38. 38)
      • 17. Zhu, Q., Wang, N., Zhang, L.: ‘Circular genetic operators based RNA genetic algorithm for modeling proton exchange membrane fuel cells’, Int. J. Hydrogen Energy, 2014, 39, (31), pp. 17779177790, doi: 10.1016/j.ijhydene.2014.07.081.
    39. 39)
      • 10. Dhirde, A.M., Dale, N.V., Salehfar, H., et al: ‘Equivalent electric circuit modeling and performance analysis of a PEM fuel cell stack using impedance spectroscopy’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 778786, doi: 10.1109/TEC.2010.2049267.
    40. 40)
      • 28. Zhang, W., Wang, N., Yang, S.: ‘Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell’, Int. J. Hydrogen Energy, 2013, 38, (14), pp. 57965806, doi: 10.1016/j.ijhydene.2013.01.058.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0232
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0232
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading