Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Review of magnetic gear technologies and their applications in marine energy

The marine energy industry is in its early stages but has a large potential for growth. One of the most significant challenges is the reduction of operation and maintenance costs. Magnetic gears (MGs) offer the potential for long periods between maintenance intervals due to their frictionless torque transmission which could reduce these costs. This study presents a summary of the state of the art in MG technology and then investigates its potential for marine energy applications. A brief overview is given of the state of the marine energy industry and the environment in which marine energy converters (MECs) operate. A short history of MG development over the past century is then presented followed by a discussion of the leading MG technologies and their relative advantages. In order to demonstrate the potential of MGs in marine applications, the current technologies, i.e. mechanically geared and direct drive machines, are examined in terms of sizing, reliability and economic value using previous studies on a similar technology, namely wind. MGs are applied to four types of MECs to demonstrate how the technology can be incorporated. The potential to deploy at scale and potential obstacles to this are then discussed.

References

    1. 1)
      • 14. Huang, C.-C., Tsai, M.-C., Dorrell, D., et al: ‘Development of a magnetic planetary gearbox’, IEEE Trans. Magn., 2008, 44, (3), pp. 403412.
    2. 2)
      • 49. Agamloh, E.B., Wallace, A.K., von Jouanne, A.: ‘A novel direct-drive ocean wave energy extraction concept with contact-less force transmission system’, Renew. Energy, 2008, 33, (3), pp. 520529.
    3. 3)
      • 6. Tlali, P., Wang, R.-J., Gerber, S.: ‘Magnetic gear technologies: a review’. Int. Conf. on Electrical Machines (ICEM), 2014, 2014, pp. 544550.
    4. 4)
      • 59. Jahns, T.: ‘Getting rare-earth magnets out of ev traction machines: A review of the many approaches being pursued to minimize or eliminate rare-earth magnets from future ev drivetrains’, IEEE Electrification Magazine, 2017, 5, (1), pp. 618.
    5. 5)
      • 20. Yong, L.Y.L., Jingwei, X.J.X., Kerong, P.K.P., et al: ‘Principle and simulation analysis of a novel structure magnetic gear’. Int. Conf. on Electrical Machines and Systems, 2008, no. 1, pp. 38453849.
    6. 6)
      • 53. Keysan, O., McDonald, A., Mueller, M.: ‘Aquamarine power oyster - C-GEN rotary machine design’, Design, no, 2009.
    7. 7)
      • 32. Padmanathan, P., Bird, J.Z.: ‘A continuously variable magnetic gear’. Proc. of the 2013 IEEE Int. Electric Machines and Drives Conf., IEMDC 2013, 2013, pp. 367373.
    8. 8)
      • 33. Pritchard, J., Bird, P.P.J.Z.: ‘A Continuously Variable Magnetic Gear’. Electric Machines and Drives Conference, IEMDC, 2013 IEEE International, 2013, pp. 1318.
    9. 9)
      • 4. Baker, N.J., Mueller, M.a.: ‘Direct drive wave energy converters’, Rev. Energies Renouvelables, 2001, pp. 17.
    10. 10)
      • 29. Wang, J., Atallah, K., Carvley, S.D.: ‘A magnetic continuously variable transmission device’, IEEE Trans. Magn., 2011, 47, (10), pp. 28152818.
    11. 11)
      • 52. Hansen, R.H., Kramer, M.M.: ‘Modelling and control of the wavestar prototype’. Proc. of the 9th European Wave and Tidal Energy Conf., 2011, pp. 110.
    12. 12)
      • 40. Tavner, P.J., Bussel, G.J.W.V., Spinato, F.: ‘Machine and converter reliabilities in wind turbines’. Int. Conf. on Power Electronics, Machines and Drives, no, April 2006, pp. 14.
    13. 13)
      • 26. Pakdelian, S., Frank, N.W., Toliyat, H.A.: Analysis and Design of the Trans-Rotary Magnetic’ Energy Conversion Congress and Exposition (ECCE), IEEE, 2012, pp. 33403347.
    14. 14)
      • 43. Marsh, G.: ‘Tidal turbines harness the power of the sea’, Reinf. Plast., 2004, 48, (6), pp. 4447.
    15. 15)
      • 17. Holehouse, R.C., Atallah, K., Wang, J.: ‘Design and realization of a linear magnetic gear’, IEEE Trans. Magn., 2011, 47, (10), pp. 41714174.
    16. 16)
      • 25. Wang, J., Atallah, K., Barnes, J.: ‘Analysis and design of a high force density linear electromagnetic actuator’. PCIM Europe Conf. Proc., 2012, vol. 47, no. 10, pp. 177185.
    17. 17)
      • 21. Frank, N.W., Toliyat, H.A.: ‘Gearing ratios of a magnetic gear for wind turbines’. 2009 IEEE Int. Electric Machines and Drives Conf., IEMDC ‘09, 2009, pp. 12241230.
    18. 18)
      • 13. Rens, J., Atallah, K., Calverley, S.D., et al: ‘A novel magnetic harmonic gear’, IEEE Trans. Ind. Appl., 2010, 46, (1), pp. 206212.
    19. 19)
      • 41. Echavarria, E., Hahn, B., van Bussel, G.J.W., et al: ‘Reliability of wind turbine technology through time’, J. Sol. Energy Eng., 2008, 130, (3), p. 031005.
    20. 20)
      • 22. Rasmussen, P.O., Andersen, T.O., Jørgensen, F.T., et al: ‘Development of a high-performance magnetic gear’, IEEE Trans. Ind. Appl., 2005, 41, (3), pp. 764770.
    21. 21)
      • 18. Mezani, S., Atallah, K., Howe, D.: ‘A high-performance axial-field magnetic gear’, J. Appl. Phys., 2006, 99, (8), pp. 97100.
    22. 22)
      • 19. Niguchi, N., Hirata, K.: ‘Cogging torque analysis of magnetic gear’, IEEE Trans. Ind. Electron., 2012, 59, (5), pp. 21892197.
    23. 23)
      • 9. Faus, H.: ‘Magnet gearing’. US Patent, 353,472, 21 August 1941. Available at https://patents.google.com/patent/US2243555A.
    24. 24)
      • 11. Kikuchi, K., Tsurumoto, S.: ‘Trial construction of a new magnetic skew gear using permanent magnet’, IEEE Trans. Magn., 1994, 30, (6), pp. 47674769.
    25. 25)
      • 47. Falcão, A.F.D.O.: ‘Wave energy utilization: a review of the technologies’, Renew. Sustain. Energy Rev., 2010, 14, (3), pp. 899918.
    26. 26)
      • 12. Rodgers, D., Lai, H.C., Outram, J.: ‘A novel lightweight wind turbine generator’, J. Chem. Inf. Model., 2013, 53, (9), pp. 16891699.
    27. 27)
      • 31. Niu, S., Ho, S.L., Fu, W.N.: ‘Design of a novel electrical continuously variable transmission system based on harmonic spectra analysis of magnetic field’, IEEE Trans. Magn., 2013, 49, (5), pp. 21612164.
    28. 28)
      • 46. http://www.emec.org.uk/marine-energy/tidaldevelopers/l, 2017.
    29. 29)
      • 45. López, I., Andreu, J., Ceballos, S., Martínez, I., et al: ‘Review of wave energy technologies and the necessary power-equipment’, Renew. Sustain. Energy Rev., 2013, 27, pp. 413434. Available at http://dx.doi.org/10.1016/j.rser.2013.07.009.
    30. 30)
      • 35. Chen, M., Chau, K.-t., Lee, C., et al: ‘Design and analysis of a New axial-Field magnetic variable gear using pole-changing permanent magnets’, Prog. Electromagn. Res., 2015, 153, no. pp. 2332.
    31. 31)
      • 30. Chen, M., Chau, K.T., Liu, C.: ‘Design of a new non-rare-earth magnetic variable gear for hybrid vehicular propulsion system’, IET Electr. Syst. Transp., 2016, 6, (3), pp. 153162. Available at http://digital-library.theiet.org/content/journals/10.1049/iet-est.2015.0034.
    32. 32)
      • 28. Kouhshahi, M.B., Bird, J.Z.: ‘Analysis of A magnetically geared lead screw’, Electrical and Computer Engineering Faculty Publications and Presentations, 2017, (421), pp. 18.
    33. 33)
      • 54. Keysan, O., Mueller, M., Doherty, R., et al: ‘C-GEN, a lightweight direct drive generator for marine energy converters’. 5th IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2010), 2010, pp. 244244.
    34. 34)
      • 37. Daneshi-Far, Z., Capolino, G.a., Henao, H.: ‘Review of failures and condition monitoring in wind turbine generators’. The XIX Int. Conf. on Electrical Machines - ICEM 2010, 2010, pp. 16.
    35. 35)
      • 27. Lu, K., Wu, W.: ‘Electromagnetic Lead Screw for Potential Wave Energy Application’, IEEE Transactions on Magnetics, 2014, 50, (11), pp. 25.
    36. 36)
      • 42. Son, G.T., Lee, H.J., Nam, T.S., et al: ‘Design and control of a modular multilevel HVDC converter with redundant power modules for noninterruptible energy transfer’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 16111619.
    37. 37)
      • 16. Martin, T.B.Jr.: ‘Magnetic transmission’. US Patent 3,378,710, 16 April 1968. Available at http://www.google.co.uk/patents/US3378710.
    38. 38)
      • 24. Hashimoto, J., Kubo, Y.: ‘A magnetic screw device’. US Patent, 5,687, 614, 1997.
    39. 39)
      • 38. Musial, W., Butterfield, S., McNiff, B.: ‘Improving wind turbine gearbox reliability’. European Wind Energy Conf., 2007, pp. 113.
    40. 40)
      • 55. http://www.infolytica.com/en/products/magnet/, 2016.
    41. 41)
      • 34. Chen, M., Chau, K.T., Li, W., et al: ‘Design and analysis of a new magnetic gear with multiple gear ratios’, IEEE Trans. Appl. Supercond., 2014, 24, (3), pp. 36.
    42. 42)
      • 48. Vining, A.J., Muetze, A.: ‘Linear Generators for Direct-Drive Ocean Wave Energy Conversion’, Electric Machines and Drives Conference, 2003, IEMDC'03, IEEE International, 2003.
    43. 43)
      • 36. Ribrant, J., Bertling, L.M.: ‘Survey of failures in wind power systems with focus on Swedish wind power plants during 1997-2005’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 167173.
    44. 44)
      • 8. Armstrong, C.: ‘Power-transmitting device’. US Patent, 687,292, 26 November 1901. Available at http://www.google.co.uk/patents/US687292.
    45. 45)
      • 7. Li, X., Chau, K.-T., Cheng, M., et al: ‘Comparison of magnetic-geared permanent magnet machines’, Prog. Electromagn. Res., 2013, 133, (2013), pp. 177198.
    46. 46)
      • 15. Atallah, K., Howe, D.: ‘A novel high-performance magnetic gear’, IEEE Trans. Magn., 2001, 37, (4 I), pp. 28442846.
    47. 47)
      • 56. https://www.environmentalexpert.com/products/langlee-robusto-wave-energy-converters-388611, 2017.
    48. 48)
      • 5. McMillan, D., Ault, G.W.: ‘Techno-economic comparison of operational aspects for direct drive and gearbox-driven wind turbines’, IEEE Trans. Energy Convers., 2010, 25, (1), pp. 191198.
    49. 49)
      • 58. http://www.moceanenergy.com/technology.html, 2015.
    50. 50)
      • 39. Polinder, H., Van Der Pijl, F.F.a., De Vilder, G.J., et al: ‘Comparison of direct-drive and geared generator concepts for wind turbines’, IEEE Trans. Energy Convers., 2006, 21, (3), pp. 725733.
    51. 51)
      • 3. Carroll, J., McDonald, A., McMillan, D.: ‘Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines’, Wind Energy, 2015, 19, http://doi.wiley.com/10.1002/we.1887.
    52. 52)
      • 51. Hansen, R.H., Andersen, T.O., Pedersen, H.C.: ‘Model based design of efficient power take-Off systems for wave energy converters’. Proc. of the 12th Scandinavian Int. Conf. on Fluis Power, 2011, pp. 115.
    53. 53)
      • 44. Jian, L., Chau, K.T., Jiang, J.Z.: ‘A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation’, IEEE Trans. Ind. Appl., 2009, 45, (3), pp. 954962.
    54. 54)
      • 10. Kikuchi, S., Tsurumoto, K.: ‘Design and characteristics of a new magnetic worm gear using permanent magnet’, IEEE Trans. Magn., 1993, 29, (6), pp. 29232925.
    55. 55)
      • 23. Evans, D.J., Zhu, Z.Q.: ‘Influence of design parameters on magnetic gear's torque capability’. 2011 IEEE Int. Electric Machines and Drives Conf., IEMDC 2011, 2011, pp. 14031408.
    56. 56)
      • 50. Li, W., Chau, K.T., Jiang, J.Z.: ‘Application of linear magnetic gears for pseudo-direct-drive oceanic wave energy harvesting’, IEEE Trans. Magn., 2011, 47, (10), pp. 26242627.
    57. 57)
      • 2. Holm, R.K., Berg, N.I., Walkusch, M., et al: ‘Wave energy conversion’, Deep Sea Res. B, Oceanogr. Lit. Rev., 2013, 30, (6), p. 491.
    58. 58)
      • 1. Corsatea, T.D., Magagna, D.: ‘Overview of European innovation activities in marine energy technology’. JRC Science and Policy Reports.
    59. 59)
      • 57. http://aw-energy.com/about-waveroller/waverollerconceptl, 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0210
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0210
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address