Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Power harmonic and interharmonic detection method in renewable power based on Nuttall double-window all-phase FFT algorithm

Harmonics and interharmonics adversely affect power grids. The fast Fourier transform (FFT) algorithm is one of the most commonly used methods for harmonic analysis. However, in practical applications, the accuracy of harmonic analysis can be seriously affected by fence effect and spectral leakage, which are undesired characteristics inherent to discrete Fourier transforms. Moreover, when non-synchronous sampling is carried out, the phase measurement is not accurate enough, and there is a large error in the identification of interharmonics. In order to improve the measurement precision, the method of all-phase spectrum analysis is used, since it has the characteristics of phase invariance and good spectral leakage suppression. A novel method based on improved Nuttall double-window all-phase FFT is proposed by improving the window function and the spectrum correction method for achieving higher precision. Through simulation and experimental verification, the proposed algorithm has proven to perform better than the traditional algorithms both for the detection of harmonics and interharmonics. In addition, the computation burden is not considerably increased when compared to such algorithms, which allows the on-line use of the proposed algorithm.

References

    1. 1)
      • 8. Zobaa, A., Abdel Aleem, S.: ‘A new approach for harmonic distortion minimization in power systems supplying nonlinear loads’, IEEE Trans. Ind. Inf., 2014, 10, (2), pp. 14011412.
    2. 2)
      • 26. Zeng, B., Teng, Z.S., Cai, Y.L., et al: ‘Harmonic phasor analysis based on improved FFT algorithm’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 5159.
    3. 3)
      • 18. Duda, K.: ‘DFT interpolation algorithm for Kaiser–Bessel and Dolph–Chebyshev windows’, IEEE Trans. Instrum. Meas., 2011, 60, (3), pp. 784790.
    4. 4)
      • 13. Zhang, F.S.H., Geng, Z.H.X., Yuan, W.: ‘The algorithm of interpolating windowed FFT for harmonic analysis of electric power system’, IEEE Trans. Power Deliv., 2001, 16, (2), pp. 160164.
    5. 5)
      • 2. Guzman, J.I., Melin, P.E., Espinoza, J.R., et al: ‘Digital implementation of selective harmonic elimination techniques in modular current source rectifiers’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 11671177.
    6. 6)
      • 5. Yang, Y., Zhou, K., Wang, H., et al: ‘Frequency adaptive selective harmonic control for grid-connected inverters’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 39123924.
    7. 7)
      • 21. Wen, H., Teng, Z.S., Wang, Y., et al: ‘Simple interpolated FFT algorithm based on minimize sidelobe windows for power-harmonic analysis’, IEEE Trans. Power Electron., 2011, 26, (9), pp. 25702579.
    8. 8)
      • 6. Yoon, C., Bai, H., Beres, R.N., et al: ‘Harmonic stability assessment for multiparalleled, grid-connected inverters’, IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 13881397.
    9. 9)
      • 3. Shukla, S., Mishra, S., Singh, B.: ‘Power quality event classification under noisy conditions using EMD-based de-noising techniques’, IEEE Trans. Ind. Inf., 2014, 10, (2), pp. 10441054.
    10. 10)
      • 4. Mcgrath, B.P., Holmes, D.G., Meynard, T.: ‘Reduced PWM harmonic distortion for multilevel inverters operating over a wide modulation range’, IEEE Trans. Power Electron., 2017, 21, (4), pp. 941949.
    11. 11)
      • 11. Yang, J.Z., Yu, C.S., Li, C.W.: ‘A new method for power signal harmonic analysis’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 12351239.
    12. 12)
      • 20. Wen, H., Teng, Z.S., Wang, Y., et al: ‘Spectral correction approach based on desirable sidelobe window for harmonic analysis of industrial power system’, IEEE Trans. Ind. Elctron., 2013, 60, (3), pp. 10011010.
    13. 13)
      • 27. Cao, H., Liu, D.J., Feng, Y.: ‘Application of the all-phase time-shift phase difference method in power harmonic detection’, Electr. Meas. Instrum., 2012, 49, (7), pp. 2428.
    14. 14)
      • 22. Huang, X.H., Wang, Z.H., Hou, G.Q.: ‘New method of estimation of phase, amplitude, and frequency based on all phase FFT spectrum analysis’. IEEE Int. Symp. Intelligent Signal Processing and Communication Systems (ISPACS), Xiamen, 2007, pp. 284287.
    15. 15)
      • 25. Tian, J.H., Sun, J.P., Wang, G.H., et al: ‘Multiband radar signal coherent fusion processing with IAA and apFFT’, IEEE Signal Process., 2013, 20, (5), pp. 463466.
    16. 16)
      • 14. Chen, K.F., Mei, S.L.: ‘Composite interpolated fast Fourier transform with the hanning window’, IEEE Trans. Instrum. Meas., 2010, 59, (6), pp. 15711579.
    17. 17)
      • 7. Belega, D., Petri, D.: ‘Accuracy analysis of the multicycle synchrophasor estimator provided by the interpolated DFT algorithm’, IEEE Trans. Instrum. Meas., 2013, 62, (5), pp. 942953.
    18. 18)
      • 24. Kou, K., Li, X., Yang, Y., et al: ‘Self-mixing interferometry based on all phase FFT for high-precision displacement measurement’, Optik, 2015, 126, (3), pp. 356360.
    19. 19)
      • 17. Wen, H., Meng, Z., Guo, S., et al: ‘Harmonic estimation using symmetrical interpolation FFT based on triangular self-convolution window’, IEEE Trans. Ind. Inf., 2014, 11, (1), pp. 1626.
    20. 20)
      • 1. Qasim, M., Khadkikar, V.: ‘Application of artificial neural networks for shunt APF control’, IEEE Trans. Ind. Informat., 2014, 61, (8), pp. 38573866.
    21. 21)
      • 12. Wen, H., Guo, S., Teng, Z., et al: ‘Frequency estimation of distorted and noisy signals in power systems by FFT-based approach’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 765774.
    22. 22)
      • 15. Mottaghi, K.M., Shayesteh, M.G.: ‘New efficient window function, replacement for the hamming window’, IET Signal Process., 2011, 5, (5), pp. 499505.
    23. 23)
      • 19. Qing, B.Y., Teng, Z.S., Gao, Y.P., et al: ‘An approach for electrical harmonic analysis based on Nuttall window double-spectrum-line interpolation FFT’, Proc. CSEE, 2008, 28, (25), pp. 153158.
    24. 24)
      • 10. Belega, D., Dallet, D.: ‘Frequency estimation via weighted multipoint interpolated DFT’, IET Sci. Meas. Technol., 2008, 2, (1), pp. 18.
    25. 25)
      • 9. Orallo, C.M., Carugati, I., Maestri, S., et al: ‘Harmonics measurement with a modulated sliding discrete Fourier transform algorithm’, IEEE Trans. Instrum. Meas., 2014, 63, (4), pp. 781793.
    26. 26)
      • 29. Qian, H., Zhao, R.X., Chen, T.: ‘Interharmonics analysis based on interpolating windowed FFT algorithm’, IEEE Trans. Power Deliv., 2007, 22, (2), pp. 10641069.
    27. 27)
      • 23. Ni, X.U., Hou, Z.X., Wang, Z.H.: ‘True 2-D all phase filter bank and its application for image compression’, J. Opt. Laser Technol., 2007, 4, (5), pp. 17021707.
    28. 28)
      • 16. Testa, A., Gallo, D., Langella, R.: ‘On the processing of harmonics and interharmonics: using Hanning window in standard framework’, IEEE Trans. Power Deliv., 2004, 19, (1), pp. 2834.
    29. 29)
      • 28. Sintamarean N, C., Blaabjerg, F., Wang, H., et al: ‘Reliability oriented design tool for the new generation of grid connected PV-inverters’, IEEE Trans. Power Electron., 2015, 30, (5), pp. 26352644.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0115
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0115
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address