Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimisation of hybrid renewable energy system using iterative filter selection approach

This study presents a hybrid renewable energy system that yields minimum total project cost and maximum reliability. The system is in modular configuration consisting of photovoltaic (PV) array, wind turbine, battery storage, AC load and a dump load. Also, the minimisation of unutilised surplus power is taken into consideration as one of the design objectives. In this study, a new technique named iterative filter selection approach is used in designing the hybrid PV–wind turbine–battery system to obtain the best acceptable solution while considering all the design objectives. The system is then justified by comparing with iterative-Pareto-fuzzy and particle swarm optimisation techniques. The technique is found to be superior in terms of total project cost with satisfaction to the load demand. The method is simulated using MATLAB and the results are presented in the study with proper discussion.

References

    1. 1)
      • 19. Maleki, A., Askarzadeh, A.: ‘Artificial bee swarm optimization for optimum sizing of a stand-alone PV/WT/FC hybrid system considering LPSP concept’, Sol. Energy, 2014, 107, pp. 227235.
    2. 2)
      • 9. Diaf, S., Notton, G., Belhamel, M., et al: ‘Design and techno economical optimization for hybrid PV/wind system under various meteorological conditions’, Appl. Energy, 2008, 85, pp. 968987.
    3. 3)
      • 6. Celik, A.N.: ‘Optimization and techno-economic analysis of autonomous photovoltaic wind hybrid energy systems in comparison to single photovoltaic and wind systems’, Energy Convers. Manage., 2002, 43, pp. 24532468.
    4. 4)
      • 10. Shen, W.X.: ‘Optimally sizing of solar array and battery in a standalone photovoltaic system in Malaysia’, Renew. Energy, 2009, 34, pp. 348352.
    5. 5)
      • 8. Diaf, S., Belhamel, M., Haddadi, M., et al: ‘Technical and economic assessment of hybrid photovoltaic/wind system with battery storage in Corsica Island’, Energy Policy, 2008, 36, pp. 743754.
    6. 6)
      • 4. Mohammed, O.H., Amirat, Y., Benbouzid, M., et al: ‘Hybrid generation systems planning expansion forecast: a critical state of the art review’. Thirty-ninth Annual Conf. of the IEEE Industrial Electronics Society, IECON 2013, 2013.
    7. 7)
      • 13. Barton, J.P., Infield, D.G.: ‘Energy storage and its use with intermittent renewable energy’, IEEE Trans. Energy Convers., 2004, 19, pp. 441448.
    8. 8)
      • 12. Kusakana, K., Vermaak, H.: ‘Hybrid photovoltaic-wind system as power solution for network operators in the D.R. Congo’. 2011 Int. Conf. Clean Electrical Power (ICCEP), 2011, pp. 703708.
    9. 9)
      • 3. Akella, A.K., Saini, R.P., Sharma, M.P.: ‘Social economical and environmental impacts of renewable energy systems’, Renew. Energy, 2009, 34, (2), pp. 390396.
    10. 10)
      • 15. Mukhtaruddin, R., Rahman, H., Hassan, M., et al: ‘Optimal hybrid renewable energy design in autonomous system using iterative-Pareto-fuzzy technique’, Electr. Power Energy Syst., 2015, 64, pp. 242249.
    11. 11)
      • 11. Bansal, A.K., Gupta, R., Kumar, R.: ‘Optimization of hybrid PV/wind energy system using meta particle swarm optimization (MPSO)’. 2010 India Int. Conf. Power Electronics (IICPE), 2011, pp. 17.
    12. 12)
      • 20. Khatib, T., Azah Mohameda, K.S.: ‘Optimization of a PV/wind micro-grid for rural housing electrification using a hybrid iterative/genetic algorithm: case study of Kuala Terengganu, Malaysia’, Energy Build., 2012, 47, pp. 321331.
    13. 13)
      • 7. Diaf, S., Diaf, D., Belhamel, M., et al: ‘A methodology for optimal sizing of autonomous hybrid PV/wind system’, Energy Policy, 2007, 35, pp. 57085718.
    14. 14)
      • 2. Straatman, P.J.T, van Sark, W.G.J.H.M.: ‘A new hybrid ocean thermal energy conversion-offshore solar pond (OTEC-OSP) design: a cost optimization approach’, Sol. Energy, 2008, 82, (6), pp. 520527.
    15. 15)
      • 1. Adeferati, T., Bansal, R.C.: ‘Integration of renewable distributed generation into the distribution system: a review’, IET Renew. Energy Power Gener., 2016, 10, (7), pp. 873884.
    16. 16)
      • 18. Suhane, P., Rangnekar, S.: ‘Optimal sizing of hybrid energy system using ant colony optimization’, Int. J. Renew. Energy Res., 2014, 4, (3), pp. 683688.
    17. 17)
      • 5. Privitera, G., Day, A.R., Dhesi, G., et al: ‘Optimizing the installation costs of renewable energy technologies in buildings: s linear programming approach’, Energy Build., 2011, 43, pp. 838843.
    18. 18)
      • 16. Ismail, M.S., Moghavvemi, M., Mahlia, T.M.I.: ‘Genetic algorithm based optimization on modeling and design of hybrid renewable energy systems’, Energy Convers. Manage., 2014, 85, pp. 120130.
    19. 19)
      • 17. Fetanat, A., Khorasaninejad, E.: ‘Size optimization for hybrid photovoltaic–wind energy system using ant colony optimization for continuous domains based integer programming’, Appl. Soft Comput., 2015, 31, pp. 196209.
    20. 20)
      • 14. Sopian, K., Zaharim, A., Ali, Y., et al: ‘Optimal operational strategy for hybrid renewable energy system using genetic algorithms’, WSEAS Trans. Math., 2008, 7, pp. 130140.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0014
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0014
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address