Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Standalone fuel cell generation system with different tracking techniques: economic analysis

The proton exchange membrane fuel cell (PEMFC) can be operated at different points such as the maximum power point (MPP) to extract maximum power and the maximum efficiency point (MEP) to operate at maximum efficiency. However, the different tracking techniques influence the cost of electricity (COE) of the fuel cell generation system. In this paper, the economic analysis of the PEMFC with the MPP tracking (MPPT) and MEP tracking (MEPT) techniques using the HOMER energy system analysis software is presented. A detailed comparison of the economic impact of the tracking techniques for ten load configurations of a standalone fuel cell generation system, which includes combined heat and power (CHP) loads is presented and discussed. Finally, based on economic considerations, a procedure to select a suitable tracking technique for particular requirements of the standalone PEMFC application is proposed. It is found that in the case of CHP configuration, the MPPT technique is the preferred technique to achieve low COE.

References

    1. 1)
      • 17. Hui Wang, M., Huang, M.-L., Jiang, W.-J., et al: ‘Maximum power point tracking control method for proton exchange membrane fuel cell’, IET Renew. Power Gener., 2016, 10, (1), pp. 908915.
    2. 2)
      • 8. Jia, J., Yang, S., Wang, Y., et al: ‘Matlab/Simulink based-study on PEM fuel cell and nonlinear control’. Proc. IEEE Int. Conf. on Control and Automation, 2009, pp. 16571662.
    3. 3)
      • 16. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Convers., 2007, 22, (2), p. 439.
    4. 4)
      • 13. Pukrushpan, J.T., Stefanopoulou, A.G., Peng, H.: ‘Modeling and control for PEM fuel cell stack system’. Proc. American Control Conf., 2002, pp. 31173122.
    5. 5)
      • 22. ‘HySolGenics’ Hydrogen Fuel System’. Available at http://www.ahasvc.org/page44.html (Accessed 11th September 2016).
    6. 6)
      • 27. Dhathathreyan, K.S., Rajalakshmi, N.: ‘Recent trends in fuel cell science and technology’, in Basu, S. (Ed.): ‘Recent trends in fuel cell science and technology’ (2013), pp. 40115.
    7. 7)
      • 25. Smit, M.: ‘Towards 40 000 h of operation for Nedstack's FCS XXL PEM fuel cell stacks by’, Fuel Cells Bull., 2014, 2014, (8), pp. 1215.
    8. 8)
      • 5. Pandian, M.S., Anwari, M., Husodo, B.Y.: ‘Efficiency and economics analysis of proton exchange membrane fuel cell’. Proc. IPEC Conf., 2010, pp. 875880.
    9. 9)
      • 1. Smith, J.A., Nehrir, M.H., Gerez, V., et al: ‘A broad look at the workings, types, and applications of fuel cells’. Proc. IEEE Power Engineering Society Summer Meeting, 2002, pp. 7075.
    10. 10)
      • 11. Boscaino, V., Rizzo, R., Miceli, R., et al: ‘Comparison of models of fuel cells based on experimental data for the design of power electronics systems’, IET Renew. Power Gener., 2015, 9, (6), pp. 660668.
    11. 11)
      • 2. Rahimi, S., Meratizaman, M., Monadizadeh, S., et al: ‘Techno-economic analysis of wind turbine-PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area’, Energy, 2014, 67, pp. 381396.
    12. 12)
      • 9. Lu, J., Zahedi, A.: ‘Maximum efficiency point tracking control for fuel cell power systems’. Proc. Int. Conf. on Power System Technology, 2010, pp. 16.
    13. 13)
      • 24. ‘Inverter’. Available at https://www.alibaba.com/product-detail/1MW-Solar-inverter-for-power-station_60366654887.html?spm=a2700.7724857.29.28.pF2y85&s=p (Accessed 11th September 2016).
    14. 14)
      • 14. Karunamurthy Kumaraswamy, V.: ‘A standalone proton exchange membrane fuel cell generation system with different tracking techniques’. Master thesis, Memorial University of Newfoundland, 2016.
    15. 15)
      • 10. Zhong, Z., Huo, H., Zhu, X., et al: ‘Adaptive maximum power point tracking control of fuel cell power plants’, J. Power Sources, 2008, 176, (1), pp. 259269.
    16. 16)
      • 18. Karunamurthy Kumaraswamy, V., Quaicoe, J.E.: ‘Tracking techniques for the PEMFC in portable applications’. Proc. 2016 IEEE Electrical Power and Energy Conf. (EPEC), Ottawa, Canada, 12–16 October 2016, pp. 9398.
    17. 17)
      • 3. Bezmalinović, D., Barbir, F., Tolj, I.: ‘Techno-economic analysis of PEM fuel cells role in photovoltaic-based systems for the remote base stations’, Int. J. Hydrogen Energy, 2013, 38, (1), pp. 417425.
    18. 18)
      • 23. ‘Hydrogen Tank’. Available at https://www.alibaba.com/showroom/hydrogen-storage-tank.html (Accessed 11th September 2016).
    19. 19)
      • 21. ‘Download Free Files Sample Data Files for HOMER Pro’. Available at https://users.homerenergy.com/pages/file_download_pro (Accessed 11th September 2016).
    20. 20)
      • 19. Masaud, T.M., Lee, K.L.K., Sen, P.K.: ‘An overview of energy storage technologies in electric power systems: What is the future?’. Proc. 2010 North American Power Symp., 2010, pp. 16.
    21. 21)
      • 20. ‘100 to 5000 W PEMFC stacks’. Available at http://fuelcellstore.com/product/search&search=horizon&category_id=20&limit=25 (Accessed 11th September 2016).
    22. 22)
      • 26. ‘Hydrogen Fuel Cost vs Gasoline’. Available at http://heshydrogen.com/hydrogen-fuel-cost-vs-gasoline/ (Accessed 11th September 2016).
    23. 23)
      • 15. Amphlett, J.C., Baumert, R.M., Man, R.F., et al: ‘Parametric modelling of the performance of a 5-kW proton exchange membrane fuel cell stack’, J. Power Sources, 1994, 49, (1–3), pp. 349356.
    24. 24)
      • 12. Khan, M.J., Iqbal, M.T.: ‘Modelling and analysis of electrochemical, thermal, and reactant flow dynamics for a PEM fuel cell system’, Fuel Cells, 2005, 5, (4), pp. 463475.
    25. 25)
      • 4. Barbir, F., Gomez, T.: ‘Efficiency and economics of proton exchange membrane (PEM) fuel cells’, Int. J. Hydrogen Energy, 1997, 22, (10/11), pp. 10271037.
    26. 26)
      • 7. Yilanci, A., Dincer, I., Ozturk, H.K.: ‘A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications’, Prog. Energy Combust. Sci., 2009, 35, (3), pp. 231244.
    27. 27)
      • 6. Ashari, G.R., Ehyaei, M.A., Mozafari, A., et al: ‘Exergy, economic, and environmental analysis of a PEM fuel cell power system to meet electrical and thermal energy needs of residential buildings’, J. Fuel Cell Sci. Technol., 2012, 9, (5), pp. 5100151001–11.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0986
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0986
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address