http://iet.metastore.ingenta.com
1887

Evaluation of the effect of flexible demand and wave energy converters on the design of hybrid energy systems

Evaluation of the effect of flexible demand and wave energy converters on the design of hybrid energy systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Many islands have high electricity prices due to the reliance on imported diesel. However, hybrid energy systems (HES) which combine renewable generation with backup generators and energy storage are becoming cost competitive. Diesel usually provides about 10% of the demand because most renewables are non-dispatchable and thus the complete decarbonisation requires massively oversized renewable generation and storage. By including renewables with different resource profiles and demand side management (DSM), the diesel consumption could be decreased without increasing storage and renewable generation capacities. Here a framework for the design and optimisation of HES using wind, wave and solar generation and DSM is introduced. For the Mediterranean it is shown that wave energy is not competitive but that DSM reduces the emissions and costs by 21 and 8%. In the North Sea, DSM has lower benefits because waves act as an energy store for the wind. Thus, the combination of wave energy converters (WECs) and wind turbines significantly reduces the need for backup generation and energy storage which leads to large reductions in costs (up to 40%) and emissions (up to 60%). DSM and WECs can both simultaneously reduce the cost and emissions of HES but need to be designed for the particular circumstances.

References

    1. 1)
      • 1. Chmiel, Z., Bhattacharyya, S.C.: ‘Analysis of off-grid electricity system at Isle of Eigg (Scotland): lessons for developing countries’, Renew. Energy, 2015, 81, pp. 578588, issn: 09601481, doi: 10.1016/j.renene.2015.03.061.
    2. 2)
      • 2. Castle, J.A., Kallis, J.M., Moite, S.M., et al: ‘Analysis of merits of hybrid wind/photovoltaic concept for stand-alone systems’. Photovoltaic Specialists Conf., 1981, pp. 738744, issn: 01608371.
    3. 3)
      • 3. Andrews, J.W.: ‘Energy-storage requirements reduced in coupled wind-solar generating systems’, Sol. Energy, 1976, 18, (1), pp. 7374.
    4. 4)
      • 4. Deshmukh, M.K., Deshmukh, S.S.: ‘Modeling of hybrid renewable energy systems’, Renew. Sustain. Energy Rev., 2008, 12, (1), pp. 235249, issn: 13640321, doi: 10.1016/j.rser.2006.07.011.
    5. 5)
      • 5. Perera, A.T.D., Attalage, R.A., Perera, K.K.C.K., et al: ‘Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission’, Energy, 2013, 54, pp. 220230. issn: 03605442, doi: 10.1016/j.energy.2013.03.028.
    6. 6)
      • 6. Luna-Rubio, R., Trejo-Perea, M., Vargas-Vázquez, D., et al: ‘Optimal sizing of renewable hybrids energy systems: a review of methodologies’, Sol. Energy, 2012, 86, (4), pp. 10771088, issn: 0038092X, doi: 10.1016/j.solener.2011.10.016.
    7. 7)
      • 7. Bernal-Agustín, J.L., Dufo-López, R.: ‘Multi-objective design and control of hybrid systems minimizing costs and unmet load’, Electr. Power Syst. Res., 2009, 79, (1), pp. 170180, issn: 03787796, doi: 10.1016/j.epsr.2008.05.011.
    8. 8)
      • 8. Sinha, S., Chandel, S.S.: ‘Review of software tools for hybrid renewable energy systems’, Renew. Sustain. Energy Rev., 2014, 32, pp. 192205, issn: 13640321, doi: 10.1016/j.rser.2014.01.035.
    9. 9)
      • 9. Lambert, T., Gilman, P., Lilienthal, P.: ‘Micropower system modeling with HOMER’, in Farret, F.A., Godoy Simoes, M. (Eds.): ‘Integration of alternative sources of energy’ (John Wiley & Sons, 2006), Ch. 15, pp. 379418, isbn: 9780471712329, doi: 10.1002/0471755621.ch15.
    10. 10)
      • 10. Suhane, P., Rangnekar, S., Mittal, A., et al: ‘Sizing and performance analysis of standalone wind-photovoltaic based hybrid energy system using ant colony optimisation’, IET Renew. Power Gener., 2016, 10, (7), pp. 964972.
    11. 11)
      • 11. Pérez-Collazo, C., Greaves, D., Iglesias, G.: ‘A review of combined wave and offshore wind energy’, Renew. Sustain. Energy Rev., 2015, 42, pp. 141153, issn: 1364-0321, doi: 10.1016/j.rser.2014.09.032.
    12. 12)
      • 12. Ioannou, A., Kalfas, A.I., Karambas, T.V.: ‘Integrated overtopping wave energy converter in a hybrid offshore wind turbine power generation system’. Proc. of ASME Turbo Expo 2014: Turbine Technical Conf. and Exposition, 2014.
    13. 13)
      • 13. Marquis, L., Kramer, M.M., Kringelum, J., et al: ‘Introduction of Wavestar wave energy converters at the Danish offshore wind power plant Horns Rev 2’. 4th Int. Conf. on Ocean Energy, 2 December 2011, pp. 27.
    14. 14)
      • 14. Karimirad, M.: ‘WindWEC: combining wind and wave energy inspired by Hywind and Wavestar’. 5th Int. Conf. on Renewable Energy Research and Applications, 2016.
    15. 15)
      • 15. Fusco, F., Nolan, G., Ringwood, J.V.: ‘Variability reduction through optimal combination of wind/wave resources – an Irish case study’, Energy, 2010, 35, (1), pp. 314325, issn: 03605442, doi: 10.1016/j.energy.2009.09.023, url: http://dx.doi.org/10.1016/j.energy.2009.09.023.
    16. 16)
      • 16. Cradden, L., Mouslim, H., Duperray, O., et al: ‘Joint exploitation of wave and offshore wind power’. Proc. of the Ninth European Wave and Tidal Energy Conf. (EWTEC) September 2011, pp. 110.
    17. 17)
      • 17. Cavaleri, L., Sclavo, M.: ‘The calibration of wind and wave model data in the Mediterranean Sea’, Coast. Eng., 2006, 53, (7), pp. 613627, issn: 03783839, doi: 10.1016/j.coastaleng.2005.12.006.
    18. 18)
      • 18. Lavidas, G., Venugopal, V., Friedrich, D.: ‘Sensitivity of a numerical wave model on wind re-analysis datasets’, Dyn. Atmos. Oceans, 2017, 77, pp. 116, issn: 03770265, doi: 10.1016/j.dynatmoce.2016.10.007.
    19. 19)
      • 19. Saha, S., Moorthi, S., Pan, H.L., et al: ‘The NCEP climate forecast system reanalysis’, Bull. Am. Meteorol. Soc., 2010, 91, (8), pp. 10151057, doi: 10.1175/2010BAMS3001.1.
    20. 20)
      • 20. Astariz, S., Iglesias, G.: ‘Selecting optimum locations for co-located wave and wind energy farms. Part II: a case study’, Energy Convers. Manage., 2016, 122, pp. 599608, issn: 01968904, doi: 10.1016/j.enconman.2016.05.078, url: http://dx.doi.org/10.1016/j.enconman.2016.05.078.
    21. 21)
      • 21. Strbac, G.: ‘Demand side management: benefits and challenges’, Energy Policy, 2008, 36, (12), pp. 44194426, issn: 03014215, doi: 10.1016/j.enpol.2008.09.030.
    22. 22)
      • 22. Krumdieck, S., Frye, J.: ‘Optimizing wind-diesel hybrid energy systems including a demand side management strategy’. 1st Int. e-Conf. on Energies, 2014.
    23. 23)
      • 23. Vazquez, F.I., Palensky, P., Cantos, S., et al: ‘Demand side management for stand-alone hybrid power systems based on load identification’, Energies, 2012, 5, (12), pp. 45174532, issn: 1996-1073, doi: 10.3390/en5114517.
    24. 24)
      • 24. Gudi, N., Wang, L., Devabhaktuni, V., et al: ‘A demand-side management simulation platform incorporating optimal management of distributed renewable resources’. 2011 IEEE/PES Power Systems Conf. and Exposition, 2011, pp. 17, doi: 10.1109/PSCE.2011.5772450.
    25. 25)
      • 25. Falnes, J.: ‘A review of wave-energy extraction’, Mar. Struct., 2007, 20, (4), pp. 185201, issn: 09518339, doi: 10.1016/j.marstruc.2007.09.001.
    26. 26)
      • 26. Falcão, A.F.De.O.: ‘Wave energy utilization: a review of the technologies’, Renew. Sustain. Energy Rev., 2010, 14, (3), pp. 899918, issn: 13640321, doi: 10.1016/j.rser.2009.11.003.
    27. 27)
      • 27. Babarit, A., Hals, J., Muliawan, M.J., et al: ‘Numerical benchmarking study of a selection of wave energy converters’, Renew. Energy, 2012, 41, pp. 4463, issn: 09601481, doi: 10.1016/j.renene.2011.10.002.
    28. 28)
      • 28. Singh, G.K.: ‘Solar power generation by PV (photovoltaic) technology: a review’, Energy, 2013, 53, pp. 113, issn: 03605442, doi: 10.1016/j.energy.2013.02.057, url: http://dx.doi.org/10.1016/j.energy.2013.02.057.
    29. 29)
      • 29. Garrett, A.: ‘Inspyred: bio-inspired algorithms in Python’. URL: https://pypi.python.org/pypi/inspyred (visited on 11/28/2016).
    30. 30)
      • 30. Pareto, V.: ‘Manuale di economia politica con una introduzione alla scienza sociale’ (Societa Editrice Libraria, Milano, 1906).
    31. 31)
      • 31. Zafirakis, D., Kavadias, K.A., Efthymiadis, S., et al: ‘100% RES integration in the island of Agios Efstratios-Greece with the use of different wind-energy storage systems’. EWEA 2012 Annual Event, 2012, pp. 110.
    32. 32)
      • 32. Koroneos, C., Xydis, G., Polyzakis, A.: ‘The optimal use of renewable energy sources-the case of Lemnos Island’, Int. J. Green Energy, 2013, 10, (8), pp. 860875, issn: 1543-5075, doi: 10.1080/15435075.2012.727929.
    33. 33)
      • 33. Friedrich, D., Lavidas, G.: ‘Combining offshore and onshore renewables with energy storage and diesel generators in a stand-alone hybrid energy system’. OSES 2015, Edinburgh, 2015.
    34. 34)
      • 34. Katsaprakakis, D.Al., Dimitris, Pr., Christakis, G.: ‘A wind parks, pumped storage and diesel engines power system for the electric power production in Astypalaia’. EWEC 2006, 2006, pp. 116, isbn: 9781622764679.
    35. 35)
      • 35. SoDa Service: URL: http://www.soda-pro.com/home (visited on 06/20/2016).
    36. 36)
      • 36. NOAA U.S. Department of Commerce National Centers for Environmental Prediction National Weather Service: ‘NCEP ADP Global Upper Air and Surface Weather Observations (PREPBUFR format), May 1997 – continuing’. 2008, URL: http://rda.ucar.edu/datasets/ds337.0/ (visited on 11/28/2016).
    37. 37)
      • 37. Booij, N., Holthuijsen, L.H., Ris, R.C.: ‘The SWAN wave model for shallow water’. Coastal Engineering Proc., 1996.
    38. 38)
      • 38. Lavidas, G., Venugopal, V., Friedrich, D.: ‘Investigating the opportunities for wave energy in the Aegean Sea’. 7th Int. Scientific Conf. on Energy and Climate Change, Athens, 2014.
    39. 39)
      • 39. GOV.UK: Postcode level electricity estimates: 2013 (experimental) – publications – GOV.UK. url: https://www.gov.uk/government/statistics/postcode-level-electricity-estimates-2013-experimental (visited on 11/28/2016).
    40. 40)
      • 40. Hardy Diesel: ‘Perkins 140-175 kW three phase Diesel generators’. URL: http://www.hardydiesel.com/diesel-generators/perkins-120-250.html (visited on 11/28/2016).
    41. 41)
      • 41. Parsons Brinckerhoff: ‘Small-scale generation cost update’. Technical report, August 2015, p. 83, URL: https://www.gov.uk/government/uploads/system/uploads/attachment{\_}data/file/456187/DECC{\_}Small-Scale{\_}Generation{\_}Costs{\_}Update{\_}FINAL.PDF.
    42. 42)
      • 42. Zakeri, B., Syri, S.: ‘Electrical energy storage systems: a comparative life cycle cost analysis’, Renew. Sustain. Energy Rev., 2015, 42, pp. 569596, doi: 10.1016/j.rser.2014.10.011.
    43. 43)
      • 43. Astariz, S., Iglesias, G.: ‘The economics of wave energy: a review’, Renew. Sustain. Energy Rev., 2015, 45, pp. 397408, issn: 13640321, doi: 10.1016/j.rser.2015.01.061.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0955
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0955
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address