access icon free Evaluation of the effect of flexible demand and wave energy converters on the design of hybrid energy systems

Many islands have high electricity prices due to the reliance on imported diesel. However, hybrid energy systems (HES) which combine renewable generation with backup generators and energy storage are becoming cost competitive. Diesel usually provides about 10% of the demand because most renewables are non-dispatchable and thus the complete decarbonisation requires massively oversized renewable generation and storage. By including renewables with different resource profiles and demand side management (DSM), the diesel consumption could be decreased without increasing storage and renewable generation capacities. Here a framework for the design and optimisation of HES using wind, wave and solar generation and DSM is introduced. For the Mediterranean it is shown that wave energy is not competitive but that DSM reduces the emissions and costs by 21 and 8%. In the North Sea, DSM has lower benefits because waves act as an energy store for the wind. Thus, the combination of wave energy converters (WECs) and wind turbines significantly reduces the need for backup generation and energy storage which leads to large reductions in costs (up to 40%) and emissions (up to 60%). DSM and WECs can both simultaneously reduce the cost and emissions of HES but need to be designed for the particular circumstances.

Inspec keywords: demand side management; wind turbines; wave power generation; hybrid power systems; pricing; power convertors

Other keywords: energy storage; renewable generation; wave energy converters; demand side management; hybrid energy systems design; backup generators

Subjects: Power system management, operation and economics; Power convertors and power supplies to apparatus; Wave power; Wind power plants

References

    1. 1)
      • 10. Suhane, P., Rangnekar, S., Mittal, A., et al: ‘Sizing and performance analysis of standalone wind-photovoltaic based hybrid energy system using ant colony optimisation’, IET Renew. Power Gener., 2016, 10, (7), pp. 964972.
    2. 2)
      • 14. Karimirad, M.: ‘WindWEC: combining wind and wave energy inspired by Hywind and Wavestar’. 5th Int. Conf. on Renewable Energy Research and Applications, 2016.
    3. 3)
      • 30. Pareto, V.: ‘Manuale di economia politica con una introduzione alla scienza sociale’ (Societa Editrice Libraria, Milano, 1906).
    4. 4)
      • 4. Deshmukh, M.K., Deshmukh, S.S.: ‘Modeling of hybrid renewable energy systems’, Renew. Sustain. Energy Rev., 2008, 12, (1), pp. 235249, issn: 13640321, doi: 10.1016/j.rser.2006.07.011.
    5. 5)
      • 8. Sinha, S., Chandel, S.S.: ‘Review of software tools for hybrid renewable energy systems’, Renew. Sustain. Energy Rev., 2014, 32, pp. 192205, issn: 13640321, doi: 10.1016/j.rser.2014.01.035.
    6. 6)
      • 1. Chmiel, Z., Bhattacharyya, S.C.: ‘Analysis of off-grid electricity system at Isle of Eigg (Scotland): lessons for developing countries’, Renew. Energy, 2015, 81, pp. 578588, issn: 09601481, doi: 10.1016/j.renene.2015.03.061.
    7. 7)
      • 22. Krumdieck, S., Frye, J.: ‘Optimizing wind-diesel hybrid energy systems including a demand side management strategy’. 1st Int. e-Conf. on Energies, 2014.
    8. 8)
      • 20. Astariz, S., Iglesias, G.: ‘Selecting optimum locations for co-located wave and wind energy farms. Part II: a case study’, Energy Convers. Manage., 2016, 122, pp. 599608, issn: 01968904, doi: 10.1016/j.enconman.2016.05.078, url: http://dx.doi.org/10.1016/j.enconman.2016.05.078.
    9. 9)
      • 6. Luna-Rubio, R., Trejo-Perea, M., Vargas-Vázquez, D., et al: ‘Optimal sizing of renewable hybrids energy systems: a review of methodologies’, Sol. Energy, 2012, 86, (4), pp. 10771088, issn: 0038092X, doi: 10.1016/j.solener.2011.10.016.
    10. 10)
      • 7. Bernal-Agustín, J.L., Dufo-López, R.: ‘Multi-objective design and control of hybrid systems minimizing costs and unmet load’, Electr. Power Syst. Res., 2009, 79, (1), pp. 170180, issn: 03787796, doi: 10.1016/j.epsr.2008.05.011.
    11. 11)
      • 37. Booij, N., Holthuijsen, L.H., Ris, R.C.: ‘The SWAN wave model for shallow water’. Coastal Engineering Proc., 1996.
    12. 12)
      • 23. Vazquez, F.I., Palensky, P., Cantos, S., et al: ‘Demand side management for stand-alone hybrid power systems based on load identification’, Energies, 2012, 5, (12), pp. 45174532, issn: 1996-1073, doi: 10.3390/en5114517.
    13. 13)
      • 35. SoDa Service: URL: http://www.soda-pro.com/home (visited on 06/20/2016).
    14. 14)
      • 3. Andrews, J.W.: ‘Energy-storage requirements reduced in coupled wind-solar generating systems’, Sol. Energy, 1976, 18, (1), pp. 7374.
    15. 15)
      • 36. NOAA U.S. Department of Commerce National Centers for Environmental Prediction National Weather Service: ‘NCEP ADP Global Upper Air and Surface Weather Observations (PREPBUFR format), May 1997 – continuing’. 2008, URL: http://rda.ucar.edu/datasets/ds337.0/ (visited on 11/28/2016).
    16. 16)
      • 21. Strbac, G.: ‘Demand side management: benefits and challenges’, Energy Policy, 2008, 36, (12), pp. 44194426, issn: 03014215, doi: 10.1016/j.enpol.2008.09.030.
    17. 17)
      • 9. Lambert, T., Gilman, P., Lilienthal, P.: ‘Micropower system modeling with HOMER’, in Farret, F.A., Godoy Simoes, M. (Eds.): ‘Integration of alternative sources of energy’ (John Wiley & Sons, 2006), Ch. 15, pp. 379418, isbn: 9780471712329, doi: 10.1002/0471755621.ch15.
    18. 18)
      • 42. Zakeri, B., Syri, S.: ‘Electrical energy storage systems: a comparative life cycle cost analysis’, Renew. Sustain. Energy Rev., 2015, 42, pp. 569596, doi: 10.1016/j.rser.2014.10.011.
    19. 19)
      • 40. Hardy Diesel: ‘Perkins 140-175 kW three phase Diesel generators’. URL: http://www.hardydiesel.com/diesel-generators/perkins-120-250.html (visited on 11/28/2016).
    20. 20)
      • 13. Marquis, L., Kramer, M.M., Kringelum, J., et al: ‘Introduction of Wavestar wave energy converters at the Danish offshore wind power plant Horns Rev 2’. 4th Int. Conf. on Ocean Energy, 2 December 2011, pp. 27.
    21. 21)
      • 29. Garrett, A.: ‘Inspyred: bio-inspired algorithms in Python’. URL: https://pypi.python.org/pypi/inspyred (visited on 11/28/2016).
    22. 22)
      • 38. Lavidas, G., Venugopal, V., Friedrich, D.: ‘Investigating the opportunities for wave energy in the Aegean Sea’. 7th Int. Scientific Conf. on Energy and Climate Change, Athens, 2014.
    23. 23)
      • 24. Gudi, N., Wang, L., Devabhaktuni, V., et al: ‘A demand-side management simulation platform incorporating optimal management of distributed renewable resources’. 2011 IEEE/PES Power Systems Conf. and Exposition, 2011, pp. 17, doi: 10.1109/PSCE.2011.5772450.
    24. 24)
      • 2. Castle, J.A., Kallis, J.M., Moite, S.M., et al: ‘Analysis of merits of hybrid wind/photovoltaic concept for stand-alone systems’. Photovoltaic Specialists Conf., 1981, pp. 738744, issn: 01608371.
    25. 25)
      • 31. Zafirakis, D., Kavadias, K.A., Efthymiadis, S., et al: ‘100% RES integration in the island of Agios Efstratios-Greece with the use of different wind-energy storage systems’. EWEA 2012 Annual Event, 2012, pp. 110.
    26. 26)
      • 18. Lavidas, G., Venugopal, V., Friedrich, D.: ‘Sensitivity of a numerical wave model on wind re-analysis datasets’, Dyn. Atmos. Oceans, 2017, 77, pp. 116, issn: 03770265, doi: 10.1016/j.dynatmoce.2016.10.007.
    27. 27)
      • 41. Parsons Brinckerhoff: ‘Small-scale generation cost update’. Technical report, August 2015, p. 83, URL: https://www.gov.uk/government/uploads/system/uploads/attachment{\_}data/file/456187/DECC{\_}Small-Scale{\_}Generation{\_}Costs{\_}Update{\_}FINAL.PDF.
    28. 28)
      • 34. Katsaprakakis, D.Al., Dimitris, Pr., Christakis, G.: ‘A wind parks, pumped storage and diesel engines power system for the electric power production in Astypalaia’. EWEC 2006, 2006, pp. 116, isbn: 9781622764679.
    29. 29)
      • 32. Koroneos, C., Xydis, G., Polyzakis, A.: ‘The optimal use of renewable energy sources-the case of Lemnos Island’, Int. J. Green Energy, 2013, 10, (8), pp. 860875, issn: 1543-5075, doi: 10.1080/15435075.2012.727929.
    30. 30)
      • 15. Fusco, F., Nolan, G., Ringwood, J.V.: ‘Variability reduction through optimal combination of wind/wave resources – an Irish case study’, Energy, 2010, 35, (1), pp. 314325, issn: 03605442, doi: 10.1016/j.energy.2009.09.023, url: http://dx.doi.org/10.1016/j.energy.2009.09.023.
    31. 31)
      • 33. Friedrich, D., Lavidas, G.: ‘Combining offshore and onshore renewables with energy storage and diesel generators in a stand-alone hybrid energy system’. OSES 2015, Edinburgh, 2015.
    32. 32)
      • 19. Saha, S., Moorthi, S., Pan, H.L., et al: ‘The NCEP climate forecast system reanalysis’, Bull. Am. Meteorol. Soc., 2010, 91, (8), pp. 10151057, doi: 10.1175/2010BAMS3001.1.
    33. 33)
      • 39. GOV.UK: Postcode level electricity estimates: 2013 (experimental) – publications – GOV.UK. url: https://www.gov.uk/government/statistics/postcode-level-electricity-estimates-2013-experimental (visited on 11/28/2016).
    34. 34)
      • 43. Astariz, S., Iglesias, G.: ‘The economics of wave energy: a review’, Renew. Sustain. Energy Rev., 2015, 45, pp. 397408, issn: 13640321, doi: 10.1016/j.rser.2015.01.061.
    35. 35)
      • 26. Falcão, A.F.De.O.: ‘Wave energy utilization: a review of the technologies’, Renew. Sustain. Energy Rev., 2010, 14, (3), pp. 899918, issn: 13640321, doi: 10.1016/j.rser.2009.11.003.
    36. 36)
      • 25. Falnes, J.: ‘A review of wave-energy extraction’, Mar. Struct., 2007, 20, (4), pp. 185201, issn: 09518339, doi: 10.1016/j.marstruc.2007.09.001.
    37. 37)
      • 12. Ioannou, A., Kalfas, A.I., Karambas, T.V.: ‘Integrated overtopping wave energy converter in a hybrid offshore wind turbine power generation system’. Proc. of ASME Turbo Expo 2014: Turbine Technical Conf. and Exposition, 2014.
    38. 38)
      • 11. Pérez-Collazo, C., Greaves, D., Iglesias, G.: ‘A review of combined wave and offshore wind energy’, Renew. Sustain. Energy Rev., 2015, 42, pp. 141153, issn: 1364-0321, doi: 10.1016/j.rser.2014.09.032.
    39. 39)
      • 27. Babarit, A., Hals, J., Muliawan, M.J., et al: ‘Numerical benchmarking study of a selection of wave energy converters’, Renew. Energy, 2012, 41, pp. 4463, issn: 09601481, doi: 10.1016/j.renene.2011.10.002.
    40. 40)
      • 17. Cavaleri, L., Sclavo, M.: ‘The calibration of wind and wave model data in the Mediterranean Sea’, Coast. Eng., 2006, 53, (7), pp. 613627, issn: 03783839, doi: 10.1016/j.coastaleng.2005.12.006.
    41. 41)
      • 16. Cradden, L., Mouslim, H., Duperray, O., et al: ‘Joint exploitation of wave and offshore wind power’. Proc. of the Ninth European Wave and Tidal Energy Conf. (EWTEC) September 2011, pp. 110.
    42. 42)
      • 5. Perera, A.T.D., Attalage, R.A., Perera, K.K.C.K., et al: ‘Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission’, Energy, 2013, 54, pp. 220230. issn: 03605442, doi: 10.1016/j.energy.2013.03.028.
    43. 43)
      • 28. Singh, G.K.: ‘Solar power generation by PV (photovoltaic) technology: a review’, Energy, 2013, 53, pp. 113, issn: 03605442, doi: 10.1016/j.energy.2013.02.057, url: http://dx.doi.org/10.1016/j.energy.2013.02.057.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0955
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0955
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading