access icon free Seismic uncoupled analyses for offshore wind turbines

For seismic assessment of wind turbines in seismically active areas, International Standards and Guidelines allow combining two separate analyses under environmental and earthquake loads, respectively. Time-domain or response-spectrum-based analyses are prescribed to compute the separate earthquake response. While some work has already been done to estimate the accuracy of uncoupled analyses for land-based wind turbines, to date no similar studies have been carried out for offshore ones. This paper investigates two different implementations of uncoupled analyses for seismic assessment of offshore wind turbines, considering the case study of a 5 MW wind turbine mounted on a tripod in intermediate waters.

Inspec keywords: offshore installations; earthquake engineering; time-domain analysis; wind turbines

Other keywords: earthquake loads; seismic uncoupled analyses; seismically active areas; response-spectrum-based analyses; time-domain analyses; land-based wind turbines; seismic assessment; offshore wind turbines

Subjects: Mathematical analysis; Wind power plants

References

    1. 1)
      • 7. Haciefendioğlu, K.: ‘Stochastic seismic response analysis of offshore wind turbine including fluid-structure-soil-interaction’, Struct. Des. Tall Spec. Build., 2012, 21, pp. 867878.
    2. 2)
      • 34. Larsen, T.J., Hansen, A.M.: ‘How 2 HAWC2, the user's manual’ (Risø National Laboratory, Technical University of Denmark, Roskilde, Denmark, 2007).
    3. 3)
      • 10. Jonkman, J., Butterfield, S., Musial, W., et al: ‘Definition of a 5-MW reference wind turbine for offshore system development’. Report No. NREL/TP-500-38060, National Renewable Energy Laboratory, 2009, pp. 163.
    4. 4)
      • 28. Manwell, J.F., McGowan, J.G., Rogers, A.L.: ‘Wind energy explained: theory, design and application’ (John Wiley & Sons, Chichester, 2010).
    5. 5)
      • 33. Jonkman, J.M., Buhl, M.L.: ‘FAST user's guide’ (National Renewable Energy Laboratory, Golden, USA, 2005).
    6. 6)
      • 22. Asareh, M.A., Schonberg, W., Volz, J.: ‘Effects of seismic and aerodynamic load interaction on structural dynamic response of multi-megawatt utility scale horizontal axis wind turbines’, Renew. Energy, 2016, 86, pp. 4958.
    7. 7)
      • 8. Kim, D.H., Lee, S.G., Lee, I.K.: ‘Seismic fragility analysis of 5 MW offshore wind turbine’, Renew. Energy, 2014, 65, pp. 250256.
    8. 8)
      • 20. Asareh, M.A., Prowell, I.: ‘A simplified approach for implicitly considering aerodynamics in the seismic response of utility scale wind turbines’. Proc. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Honolulu, USA, April 2012.
    9. 9)
      • 37. Makris, N., Gazetas, G., Delis, E.: ‘Dynamic soil-pile-foundation-structure interaction: records and predictions’, Géotechnique, 1996, 46, (1), pp. 3350.
    10. 10)
      • 19. Prowell, I.: ‘An experimental and numerical study of wind turbine seismic behavior’. PhD thesis, University of California at San Diego, 2011.
    11. 11)
      • 12. Prowell, I., Veletzos, M., Elgamal, A., et al: ‘Experimental and numerical seismic response of a 65kW wind turbine’, J. Earthqu. Eng., 2009, 13, (8), pp. 11721190.
    12. 12)
      • 29. Chakrabarti, S.K.: ‘Hydrodynamics of offshore structures’ (WIT Press, Southampton, UK, 1987).
    13. 13)
      • 6. U.S. Geological Survey: ‘Hazard map (PGA, 2% in 50 years)’, 2008.
    14. 14)
      • 26. Bladed for Windows user manual’ (Garrad Hassan and Partners, Bristol, UK, 2000).
    15. 15)
      • 4. Failla, G., Arena, F.: ‘New perspectives in offshore wind energy’, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., 2015, 373, p. 20140228.
    16. 16)
      • 18. Valamanesh, V., Myers, A.: ‘Aerodynamic damping and seismic response of horizontal axis wind turbine towers’, J. Struct. Eng., 2014, 140, (11), p. 04014090.
    17. 17)
      • 38. Boulanger, R.W., Curras, C.J., Kutter, B.L., et al: ‘Seismic soil-pile-structure interaction experiments and analyses’, J. Geotech. Geoenviron. Eng., 1999, 125, (9), pp. 750759.
    18. 18)
      • 35. Makris, N., Gazetas, G.: ‘Displacement phase differences in a harmonically oscillating pile’, Géotechnique, 1993, 43, (1), pp. 135150.
    19. 19)
      • 1. IEC 61400-3: ‘Wind turbines – Part 3: design requirements for offshore wind turbines’, 2009.
    20. 20)
      • 3. DNV-OS-J101: ‘Design of offshore wind turbine structures’, 2013.
    21. 21)
      • 23. Santangelo, F., Failla, G., Arena, F., et al: ‘Seismic assessment of offshore wind turbines via time-domain uncoupled analyses’. Proc. Offshore Storage Symp. (OSES), Valletta, Malta, July 2016.
    22. 22)
      • 31. ‘Pacific Earthquake Engineering Research Center (PEER) – Peer Ground Motion Database’. Available at http://ngawest2.berkeley.edu, accessed March 2016.
    23. 23)
      • 24. Santangelo, F., Failla, G., Arena, F., et al: ‘On time-domain uncoupled analyses for offshore wind turbines under seismic loads’. Submitted to Bullettin of Earthquake Engineering, 2016.
    24. 24)
      • 15. IEC 61400-1: ‘Wind turbines – Part 1: design requirements’, 2005.
    25. 25)
      • 11. Zhao, X., Maißer, P.: ‘Seismic response analysis of wind turbine towers including soil-structure interaction’, Proc. Inst. Mech. Eng. Pt. K-J Multi-Body Dyn., 2006, 220, (1), pp. 5361.
    26. 26)
      • 25. Santangelo, F., Failla, G., Santini, A., et al: ‘Time-domain uncoupled analyses for seismic assessment of land-based wind turbines’, Eng. Struct., 2016, 123, pp. 275299.
    27. 27)
      • 2. GL 2012: ‘Guideline for the certification of offshore wind turbines’, 2012.
    28. 28)
      • 17. Witcher, D.: ‘Seismic analysis of wind turbines in the time domain’, Wind Energy, 2005, 8, (1), pp. 8191.
    29. 29)
      • 13. Prowell, I., Elgamal, A., Uang, C., et al: ‘Estimation of seismic load demand for a wind turbine in the time domain’. Proc. Eur. Wind Energy Conf. Exhib. (EWEC), Warsaw, Poland, April 2010.
    30. 30)
      • 36. Kavvadas, M., Gazetas, G.: ‘Kinematic seismic response and bending of free-head piles in layered soil’, Géotechnique, 1993, 43, (2), pp. 207222.
    31. 31)
      • 21. Asareh, M.A., Volz, J.S.: ‘Evaluation of aerodynamic and seismic coupling for wind turbines using finite element approach’. Proc. ASME 2013 Int. Mechanical Engineering Congress and Exposition, vol. 4B – Dynamics, Vibration and Control, San Diego, USA, November 2013.
    32. 32)
      • 16. ASCE/AWEA RP2011: ‘Recommended practice for compliance of large land-based wind turbine support structures’, 2011.
    33. 33)
      • 30. Di Paola, M., Failla, G.: ‘Stochastic response of offshore structures by a new approach to statistical cubicization’, J. Offshore Mech. Arct. Eng. Trans. ASME, 2002, 124, (1), pp. 613.
    34. 34)
      • 14. Prowell, I., Elgamal, A., Uang, C., et al: ‘Shake table testing and numerical simulation of a utility-scale wind turbine including operational effects’, Wind Energy, 2014, 17, (7), pp. 9971016.
    35. 35)
      • 27. CSI analysis reference manual for SAP 2000’ (Computers & Structures, Berkeley, USA, 1995).
    36. 36)
      • 32. Hasselmann, K., Barnett, T.P., Bouws, E., et al: ‘Measurements of wind wave growth and swell decay during the joint North Sea wave project (JONSWAP)’, Dt. Hydrogr. Z., 1973, A8, pp. 195.
    37. 37)
      • 9. Alati, N., Failla, G., Arena, F.: ‘Seismic analysis of offshore wind turbines on bottom-fixed support structures’, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2015, 373, p. 20140086.
    38. 38)
      • 5. Schwartz, M., Heimiller, D., Haymes, S., et al: ‘Assessment of offshore wind energy resources for the United States’. Report No. NREL/TP-500-45889, National Renewable Energy Laboratory, 2010, pp. 196.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0954
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0954
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading