Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimisation and optimal geometry design for thermal energy storages in high temperature concentrating solar power

This study presents a comprehensive decision support model formulated as a finite-horizon-constrained optimisation problem to optimally design the geometry variables that maximise the net present value (NPV) associated to the thermal energy storage (TES) investment over a given time horizon. This study faces one of the main problems in a TES, which is to react to the unpredictable production/demand processes, by determining a high-level optimal size of the TES maximising the NPV that captures the storage benefits as well as detailed fixed and variable costs over a chosen time horizon. The storage benefits are defined, so that they model the costs of the expected discharged thermal energy over a year. Moreover, the authors account for various costs model regarding the total costs of the heat transfer tube material, the storage material, and the insulation material. The proposed decision model can be considered as practical framework that can support engineers and decision makers in the process of design and planning of future. They investigate performance and efficiency of the proposed decision support system framework through representative case studies. Numerical studies demonstrate the usefulness and efficacy of the proposed decision model.

References

    1. 1)
      • 26. Jian, Y., Bai, F., Falcoz, Q., et al: ‘Thermal analysis and design of solid energy storage systems using a modified lumped capacitance method’, Appl. Therm. Eng., 2015, 75, pp. 213223.
    2. 2)
      • 6. Kumar, A., Saha, S.K.: ‘Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix’, Appl. Therm. Eng., 2016, 109, pp. 911923.
    3. 3)
      • 11. Niedermeier, K., Flesch, J., Marocco, L., et al: ‘Assessment of thermal energy storage options in a sodium-based CSP plant’, Appl. Therm. Eng., 2016, 107, pp. 386397.
    4. 4)
      • 1. Jacob, R., Belusko, M., Inés Fernández, A., et al: ‘Embodied energy and cost of high temperature thermal energy storage systems for use with concentrated solar power plants’, Appl. Energy, 2016, 180, pp. 586597.
    5. 5)
      • 3. Tiari, S., Qiu, S., Mahdavi, M.: ‘Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material’, Energy Convers. Manage., 2016, 118, pp. 426437.
    6. 6)
      • 8. Abujas, C.R., Jove, A., Prieto, C., et al: ‘Performance comparison of a group of thermal conductivity enhancement methodology in phase change material for thermal storage application’, Renew. Energy, 2016, 97, pp. 434443.
    7. 7)
      • 20. Xu, B., Li, P.-W., Chan, C.L.: ‘Extending the validity of lumped capacitance method for large Biot number in thermal storage application’, Sol. Energy, 2012, 86, (6), pp. 17091724.
    8. 8)
      • 17. Wu, M., Xu, C., He, Y.-L.: ‘Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules’, Appl. Energy, 2014, 121, pp. 184195.
    9. 9)
      • 10. Hübner, S., Eck, M., Stiller, C., et al: ‘Techno-economic heat transfer optimization of large scale latent heat energy storage systems in solar thermal power plants’, Appl. Therm. Eng., 2016, 98, pp. 483491.
    10. 10)
      • 14. Luo, Z., Wang, C., Xiao, G., et al: ‘Simulation and experimental study on honeycomb-ceramic thermal energy storage for solar thermal systems’, Appl. Therm. Eng., 2014, 73, pp. 622628.
    11. 11)
      • 24. Jian, Y., Falcoz, Q., Neveu, P., et al: ‘Design and optimization of solid thermal energy storage modules for solar thermal power plant applications’, Appl. Energy, 2015, 139, pp. 3042.
    12. 12)
      • 5. Soria, R., Lucena, A.F.P., Tomaschek, J., et al: ‘Modelling concentrated solar power (CSP) in the Brazilian energy system: a soft-linked model coupling approach’, Energy, 2016, 116, pp. 265280.
    13. 13)
      • 13. Abutayeh, M., Alazzam, A., El-Khasawneh, B.: ‘Optimizing thermal energy storage operation’, Sol. Energy, 2015, 120, pp. 318329.
    14. 14)
      • 22. Li, P., Lew, J.V., Chan, C., et al: ‘Similarity and generalized analysis of efficiencies of thermal energy storage systems’, Renew. Energy, 2012, 39, pp. 388402.
    15. 15)
      • 16. Angrisani, G., Canelli, M., Roselli, C., et al: ‘Calibration and validation of a thermal energy storage model: influence on simulation results’, Appl. Therm. Eng., 2014, 67, pp. 190200.
    16. 16)
      • 23. Incropera, F.P., DeWitt, D.P.: ‘Introduction to heat transfer’ (John Wiley and Sons, Inc., 2002, 4th edn.).
    17. 17)
      • 21. Ozisik, M.N.: ‘Heat conduction’ (Wiley-Interscience, 1993, 2nd edn.), ISBN: 0471532568.
    18. 18)
      • 18. Tamme, R., Laing, D., Steinmann, W.D.: ‘Advanced thermal energy storage technology for parabolic trough’, ASME J. Sol. Energy Eng., 2004, 126, pp. 794800.
    19. 19)
      • 4. Casati, E., Casella, F., Colonna, P.: ‘Design of CSP plants with optimally operated thermal storage’, Sol. Energy, 2015, 116, pp. 371387.
    20. 20)
      • 9. Fernandez, A.G., Gomez-Vidal, J.C.: ‘Thermophysical properties of low cost lithium nitrate salts produced in northern Chile for thermal energy storage’, Renew. Energy, 2017, 101, pp. 120125.
    21. 21)
      • 2. Gokon, N., Yamaguchi, T., Kodama, T.: ‘Cyclic thermal storage/discharge performances of a hypereutectic Cu–Si alloy under vacuum for solar thermochemical process’, Energy, 2016, 113, pp. 10991108.
    22. 22)
      • 15. Kim, H., Park, D., Park, E.-S., et al: ‘Numerical modeling and optimization of an insulation system for underground thermal energy storage’, Appl. Therm. Eng., 2015, 91, pp. 687693.
    23. 23)
      • 25. Laing, D., Lehmann, D., Fiß, M., et al: ‘Test results of concrete thermal energy storage for parabolic trough power plants’, J. Sol. Energy Eng., 2009, 131, (4), p. 041007.
    24. 24)
      • 12. Mehos, M., Jorgenson, J., Denholm, P., et al: ‘An assessment of the net value of CSP systems integrated with thermal energy storage’, Energy Procedia, 2015, 69, pp. 20602071.
    25. 25)
      • 19. Wu, M., Li, M., Xu, C., et al: ‘The impact of concrete structure on the thermal performance of the dual-media thermocline thermal storage tank using concrete as the solid medium’.
    26. 26)
      • 7. Singh, D., Kim, T., Zhao, W., et al: ‘Development of graphite foam infiltrated with MgCl2 for a latent heat based thermal energy storage (LHTES) system’, Renew. Energy, 2016, 94, pp. 660667.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0929
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0929
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address