access icon free Analysis of inverter sizing ratio for PV systems considering local climate data in central Brazil

The operating cost reduction of photovoltaic (PV) systems is an important way to increase its economic viability for stakeholders. In this study, an inverter sizing ratio (ISR) analysis is carried out in order to quantify its potential benefit in the context of building-integrated PV systems and PV distributed generation in the central region of Brazil. An algorithm was created to analyse the ISR considering 12 years of measured climate data and data provided by manufacturers of system components. Among three analytical methodologies discussed in this study, the power limitation analysis seems to be the best reference for design adjustments related to a specific location or energy market. By that, a potential reduction over 10% of levelised cost of energy can be achieved in case of varying ISR from the unity value (theoretical) to its new fitted value.

Inspec keywords: distributed power generation; building integrated photovoltaics; invertors

Other keywords: PV distributed generation; building-integrated PV systems; photovoltaic systems; central Brazil; inverter sizing ratio; power limitation analysis; operating cost reduction; ISR; local climate data

Subjects: Distributed power generation; DC-AC power convertors (invertors); Solar power stations and photovoltaic power systems

References

    1. 1)
      • 7. Holdermann, C., Kissel, J., Beigel, J.: ‘Distributed photovoltaic generation in Brazil: an economic viability analysis of small-scale photovoltaic systems in the residential and commercial sectors’, Energy Policy, 2014, 67, pp. 612617.
    2. 2)
      • 1. ANEEL: ‘Resolucao normativa 482’, 2012.
    3. 3)
      • 14. Demoulias, C.: ‘A new simple analytical method for calculating the optimum inverter size in grid-connected PV plants’, Electr. Power Syst. Res., 2010, 80, pp. 11971204.
    4. 4)
      • 3. EPE: ‘Leilao de energia de reserva de 2014’ (Empresa de Pesquisa Energetica, 2014), pp. 122, Available at http://www.epe.gov.br/leiloes/Documents/Leil%C3%B5es%202014/NT_EPE-DEE-NT-150_2014.pdf, accessed 24 October 2016.
    5. 5)
      • 20. Hay, J.E., Davies, J.A.: ‘Calculation of the solar radiation incident on an inclined surface’. Proc. First Canadian Solar Radiation Data Workshop, 1980, p. 59.
    6. 6)
      • 5. Rüther, R., Zilles, R.: ‘Making the case for grid-connected photovoltaics in Brazil’, Energy Policy, 2011, 39, pp. 10271030.
    7. 7)
      • 12. Khatib, T., Mohamed, A., Sopian, K.: ‘A review of photovoltaic systems size optimization techniques’, Renew. Sustain. Energy Rev., 2013, 22, pp. 454465.
    8. 8)
      • 13. Macêdo, W.N., Zilles, R.: ‘Operational results of grid-connected photovoltaic system with different inverter's sizing factors (ISF)’, Prog. Photovolt., 2007, 15, pp. 337352.
    9. 9)
      • 26. PVsyst, Available at http://www.pvsyst.com/en/, accessed 24 October 2016.
    10. 10)
      • 15. Luoma, J., Kleissl, J., Murray, K.: ‘Optimal inverter sizing considering cloud enhancement’, Sol. Energy, 2012, 86, pp. 421429.
    11. 11)
      • 8. Januzzi, G.M., Melo, C.A.: ‘Grid-connected photovoltaic in Brazil: policies and potential impacts for 2030’, Energy Sustain. Dev., 2013, 17, pp. 4046.
    12. 12)
      • 6. Mitscher, M., Rüther, R.: ‘Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil’, Energy Policy, 2012, 49, pp. 688694.
    13. 13)
      • 4. EPE: ‘Expansao da geracao: 1° leilao de energia de reserva de 2015’ (Empresa de Pesquisa Energetica, 2015), pp. 126, Available at http://www.epe.gov.br/leiloes/Documents/Leil%C3%A3o%20de%20Reserva%20(2015)/NT_EPE-DEE-NT-127_2015-r0_completo.pdf, accessed 24 October 2016.
    14. 14)
      • 11. Burger, B., Rüther, R.: ‘Inverter sizing of grid-connected photovoltaic systems in the light of local solar resource distribution characteristics and temperature’, Sol. Energy, 2006, 80, pp. 3245.
    15. 15)
      • 25. ELTEK: ‘THEIA series product guide: string inverters’, Available at http://www.eltek.com/wip4/theia/Product_guide.pdf, accessed 24 October 2016.
    16. 16)
      • 21. Souza, A.P., Escobedo, J.F.: ‘Optimal sizing of array and inverter for grid-connected photovoltaic systems’, Int. J. Renew. Energy Res., 2013, 3, p. 15.
    17. 17)
      • 18. Mondol, J.D., Yohanis, Y.G., Norton, B.: ‘Optimal sizing of array and inverter for grid-connected photovoltaic systems’, Sol. Energy, 2006, 80, pp. 15171539.
    18. 18)
      • 10. Camps, X., Velasco, G., de la Hoz, J., et al: ‘Contribution to the PV-to-inverter sizing ratio determination using a custom flexible experimental setup’, Appl. Energy, 2015, 149, pp. 3545.
    19. 19)
      • 17. Chen, S., Li, P., Brady, D., et al: ‘Determining the optimum grid-connected photovoltaic inverter size’, Sol. Energy, 2013, 87, pp. 96116.
    20. 20)
      • 22. Duffie, J.A., Beckman, W.A.: ‘Solar engineering of thermal processes’ (John Wiley & Sons, 2013, 4th edn.), pp. 1928.
    21. 21)
      • 2. ANEEL: ‘Relacao de registros de micro e minigeradores distribuidos’, Available at http://www2.aneel.gov.br/scg/rcgMicro.asp, accessed 24 October 2016.
    22. 22)
      • 9. Silveira, J.L., Tuna, C.E., Lamas, W.Q.: ‘The need of subsidy for the implementation of photovoltaic solar energy as supporting of decentralized electrical power generation in Brazil’, Renew. Sustain. Energy Rev., 2013, 20, pp. 133141.
    23. 23)
      • 16. Notton, G., Lazarov, V., Stoyanov, L.: ‘Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations’, Renew. Energy, 2010, 35, pp. 541554.
    24. 24)
      • 19. Erbs, D.G., Klein, S.A., Duffie, J.A.: ‘Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation’, Sol. Energy, 1982, 28, pp. 293302.
    25. 25)
      • 24. Schmidt, H., Jantsch, M., Schmd, J.: ‘Results of the concerted action on power conditioning and control’. 11th European Photovoltaic Solar Energy Conf., 1992.
    26. 26)
      • 27. Branker, K., Pathak, M.J.M., Pearce, J.M.: ‘A review of solar photovoltaic levelized cost of electricity’, Renew. Sustain. Energy Rev., 2011, 15, pp. 44704482.
    27. 27)
      • 23. Evans, D.L.: ‘Simplified method for predicting photovoltaic array output’, Sol. Energy, 1981, 27, pp. 550560.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0918
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0918
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading