access icon free Design and testing of a laboratory scale test rig for wave energy converters using a double-sided permanent magnet linear generator

This study considers the design and testing of a laboratory scale test rig for wave energy converters (WECs). The main element of the test rig is a double-sided permanent magnet linear generator (PMLG). In this study, the authors describe the detailed design of the PMLG. The objective of the design is to find the detailed parameters of the PMLG to meet the targeted electromotive force (EMF) voltage with respect to the designed physical constraints. The design procedure is easy to follow and emphasises the practical aspects to construct the PMLG. A spreadsheet table was generated using the procedure to find the design parameters. Therefore, a designer can easily modify the parameters based on the physical constraints and the targeted EMF voltage. In addition to that, the authors explain the procedure to find the rating temperature for the generator. Finally, this PMLG is integrated with other components to form the test rig. The experiment is conducted to show how close the performance of the constructed PMLG is, in term of its EMF voltage and rated thermal, to the designed values. Additional tests were also conducted to test the performance of the test rig using various scenarios similar to ocean wave profiles.

Inspec keywords: permanent magnet generators; linear machines; wave power generation; electric potential; power convertors

Other keywords: spreadsheet table; WEC; double-sided permanent magnet linear generator; laboratory scale test rig; EMF voltage; electromotive force voltage; constructed PMLG; ocean wave profile; double-sided PMLG; wave energy converters; rating temperature

Subjects: Power convertors and power supplies to apparatus; a.c. machines; Wave power; Linear machines

References

    1. 1)
      • 13. Leijon, M., Bernhoff, H., Agren, O., et al: ‘Multiphysics simulation of wave energy to electric energy conversion by permanent magnet generator’, IEEE Trans. Energy Convers., 2005, 20, (1), pp. 219224.
    2. 2)
      • 12. Wang, D., Shao, C., Wang, X.: ‘Design and performance evaluation of a tubular linear switched reluctance generator with low cost and high thrust density’, IEEE Trans. Appl. Superconduct., 2016, 26, 7, 0610705.
    3. 3)
      • 9. Farrok, O., Islam, R., Sheikh, M., et al: ‘Analysis and design of a novel linear generator for harvesting oceanic wave energy’. Int. Conf. on Applied Superconductivity and Electromagnetic Devices, 2015, pp. 272273.
    4. 4)
      • 7. Baker, N., Mueller, M., Spooner, E.: ‘Permanent magnet air-cored tubular linear generator for marine energy converters’. 2nd Int. Conf. on Power Electronics, Machines and Drives, 2004, vol. 2, pp. 862867.
    5. 5)
      • 6. Wijono, H., Nor, K.: ‘Linear generator: design and simulation’. Proc. National Power and Energy Conf., 2003, pp. 306311.
    6. 6)
      • 5. Faiz, J., Salari, M., Shahgholian, G.: ‘Reduction of cogging force in linear permanent-magnet generator’, IEEE Trans. Magn., 2010, 46, (1), pp. 135140.
    7. 7)
      • 1. Hong, Y., Eriksson, M., Castellucci, V., et al: ‘Linear generator-based wave energy converter model with experimental verification and three loading strategies’, IET J. Renew. Energy Gener., 2016, 10, (3), pp. 349359.
    8. 8)
      • 21. Keysan, O., Mueller, M., McDonald, A., et al: ‘Designing the C-GEN lightweight direct drive generator for wave and tidal energy’, IET Renew. Power Gener., 2012, 6, (3), pp. 161170.
    9. 9)
      • 15. Parel, T., Mihai, R., Sykulski, J., et al: ‘Optimization of a tubular linear machine with permanent magnets for wave energy extraction’, Int. J. Comput. Math. Electr., 2011, 30, (3), pp. 10561068.
    10. 10)
      • 3. Wahyudie, A., Jama, M., Saeed, O., et al: ‘Robust and low computational cost controller for improving captured power in heaving wave energy converters’, Renew. Energy, 2015, 82, pp. 114124.
    11. 11)
      • 18. Hodgins, N., Keysan, O., Mcdonald, A., et al: ‘Design and testing of a linear generator for wave-energy applications’, IEEE Trans. Ind. Electron., 2012, 59, (5), pp. 20942103.
    12. 12)
      • 16. Prudell, J., Stoddard, M., Amon, E., et al: ‘A permanent-magnet tubular linear generator for ocean wave energy conversion’, IEEE Trans. Ind. Appl., 2010, 46, (6), pp. 23922400.
    13. 13)
      • 20. Rajput, R.: ‘A textbook of-electrical technology’ (Firewall Media, 2006).
    14. 14)
      • 19. Boldea, I., Nasar, S.: ‘Linear electric actuators and generators’ (Cambridge University Press, 2009).
    15. 15)
      • 17. Crozier, R., Bailey, H., Spooner, E., et al: ‘Analysis, design and testing of a novel direct-drive wave energy converter system’, IET J. Renew. Power Gener., 2013, 7, (5), pp. 565573.
    16. 16)
      • 14. Ma, C., Zhao, W., Qu, L.: ‘Design optimization of a linear generator with dual Halbach array for human motion energy harvesting’. IEEE Electric Machines and Drives Conf., May 2015, pp. 703708.
    17. 17)
      • 11. Ma, M., Li, L.: ‘Design and analysis of a novel flux-modulated permanent magnet linear generator with sandwiched armature stator’. IEEE Conf. on Applied Superconductivity and Electromagnetic Devices, 2015, pp. 508509.
    18. 18)
      • 10. Oprea, C., Martis, C., Biro, K., et al: ‘Design and testing of a four-sided permanent magnet linear generator prototype’. 12th Int. Conf. on Electrical Machine, 2010.
    19. 19)
      • 8. Shek, J., Macpherson, D., Mueller, M.: ‘Experimental verification of linear generator control for direct drive wave energy conversion’, IET Renew. Energy, 2010, 4, (5), pp. 395403.
    20. 20)
      • 4. Cruz, J.: ‘Ocean wave energy, current status and future perspectives’ (Springer, 2010).
    21. 21)
      • 2. Jama, M., Noura, H., Wahyudie, A., et al: ‘Enhancing the performance of heaving wave energy converters using model-free control approach’, Renew. Energy, 2015, 83, pp. 931941.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0874
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0874
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading