© The Institution of Engineering and Technology
Modern PV arrays are generally designed with bypass diodes to avoid damage. However, such arrays exhibit multiple peaks in their P–V characteristics under partial shading conditions. Owing to the limitation in the abilities of conventional maximum power point tracking algorithms in such cases, the application of other optimisation algorithms has been explored. This study proposes a modified particle velocitybased particle swarm optimisation (MPVPSO) algorithm for tracking the global power peak of the multiple peak P–V characteristics. The MPVPSO algorithm is both adaptive and deterministic in nature. It eliminates the inherent randomness in the conventional PSO algorithm by excluding the use of random numbers in the velocity equation. The proposed algorithm also eliminates the need for tuning the weight factor, the cognitive and social acceleration coefficients by introducing adaptive values for them which adjust themselves based on the particle position. These adaptive values also solve problems like oscillations about the global best position during steadystate operation and particles getting trapped in local minima. The effectiveness of the proposed MPVPSO algorithm is validated through MATLAB/Simulink simulations and hardware experiments.
References


1)

1. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 439–449.

2)

2. Houssamo, I., Locment, F., Sechilariu, M.: ‘Maximum power tracking for photovoltaic power system: development and experimental comparison of two algorithms’, IET Renew. Energy, 2010, 35, pp. 2381–2387.

3)

3. Faraji, R., Rouholamini, A., Naji, H.R., et al: ‘FPGAbased real time incremental conductance maximum power point tracking controller for photovoltaic systems’, IET Power Electron., 2014, 7, (5), pp. 1294–1304.

4)

4. Mohd Zainuri, M.A.A., Mohd Radzi, M.A., Soh, A.C., et al: ‘Development of adaptive perturb and observefuzzy control maximum power point tracking for photovoltaic boost dcdc converter’, IET Renew. Power Gener., 2014, 8, (2), pp. 183–194.

5)

5. Andrejasic, T., Jankovec, M., Topic, M.: ‘Comparison of direct maximum power point tracking algorithms using EN 50530 dynamic test procedure’, IET Renew. Power Gener., 2011, 5, (4), pp. 281–286.

6)

6. Jain, S., Agarwal, V.: ‘Comparison of the performance of maximum power point tracking schemes applied to singlestage gridconnected photovoltaic systems’, IET Electr. Power Appl., 2007, 1, (5), pp. 753–762.

7)

7. Tafticht, T., Agbossou, K., Doumbia, E.L., et al: ‘An improved maximum power point tracking method for photovoltaic systems’, IET Renew. Energy, 2008, 33, pp. 1508–1516.

8)

8. Patel, H., Agarwal, V.: ‘Maximum power point tracking scheme for PV systems operating under partially shaded conditions’, IEEE Trans. Ind. Electron., 2008, 55, (4), pp. 1689–1698.

9)

9. Syafaruddin Karatepe, E., Hiyama, T.: ‘Artificial neural networkpolar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions’, IET Renew. Power Gener., 2009, 3, (2), pp. 239–253.

10)

10. Koutroulis, E., Blaabjerg, F.: ‘A new technique for tracking the global maximum power point of PV arrays operating under partialshading conditions’, IEEE J. Photovolt., 2012, 2, (2), pp. 184–190.

11)

11. Nguyen, T.L., Low, K.S.: ‘A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 3456–3467.

12)

12. Kobayashi, K., Takano, I., Sawada, Y.: ‘A study on a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions’. Proc. IEEE Power Eng. Soc. General Meeting, July 2003, pp. 2612–2617.

13)

13. Boztepe, M., Guinjoan, F., VelascoQuesada, G., et al: ‘Global MPPT scheme for photovoltaic string inverters based on restricted voltage window search algorithm’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 3302–3312.

14)

14. Ishaque, K., Salam, Z., Amjad, M., et al: ‘An improved particle swarm optimization (PSO)based MPPT for PV with reduced steadystate oscillation’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 3627–3638.

15)

15. Jhang, J.H., Tian, I.S.: ‘A maximum power point tracking method based on perturbandobserve combined with particle swarm optimization’, IEEE J. Photovolt., 2014, 4, (2), pp. 626–633.

16)

16. Ishaque, K., Salam, Z.: ‘A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition’, IEEE Trans. Ind. Electron., 2012, 60, (8), pp. 3195–3206.

17)

17. Liu, Y.H., Huang, S.C., Huang, J.W., et al: ‘A particle swarm optimizationbased maximum power point tracking algorithm for PV systems operating under partially shaded conditions’, IEEE Trans. Energy Convers., 2012, 27, (4), pp. 1027–1035.

18)

18. Clerc, M., Kennedy, J.: ‘The particle swarm – explosion, stability, and convergence in a multidimensional complex space’, IEEE Trans. Evol. Comput., 2002, 6, (1), pp. 58–73.

19)

19. Kollimalla, S.K., Mishra, M.K.: ‘Variable perturbation size adaptive P&O MPPT algorithm for sudden changes in irradiance’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 718–728.

20)

20. Villalva, M.G., de Siqueira, T.G., Ruppert, E.: ‘Voltage regulation of photovoltaic arrays: smallsignal analysis and control design’, IET Power Electron., 2010, 3, (6), pp. 869–880.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietrpg.2016.0838
Related content
content/journals/10.1049/ietrpg.2016.0838
pub_keyword,iet_inspecKeyword,pub_concept
6
6