Global maximum power point tracking of PV arrays under partial shading conditions using a modified particle velocity-based PSO technique

Global maximum power point tracking of PV arrays under partial shading conditions using a modified particle velocity-based PSO technique

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Modern PV arrays are generally designed with bypass diodes to avoid damage. However, such arrays exhibit multiple peaks in their PV characteristics under partial shading conditions. Owing to the limitation in the abilities of conventional maximum power point tracking algorithms in such cases, the application of other optimisation algorithms has been explored. This study proposes a modified particle velocity-based particle swarm optimisation (MPV-PSO) algorithm for tracking the global power peak of the multiple peak PV characteristics. The MPV-PSO algorithm is both adaptive and deterministic in nature. It eliminates the inherent randomness in the conventional PSO algorithm by excluding the use of random numbers in the velocity equation. The proposed algorithm also eliminates the need for tuning the weight factor, the cognitive and social acceleration coefficients by introducing adaptive values for them which adjust themselves based on the particle position. These adaptive values also solve problems like oscillations about the global best position during steady-state operation and particles getting trapped in local minima. The effectiveness of the proposed MPV-PSO algorithm is validated through MATLAB/Simulink simulations and hardware experiments.


    1. 1)
      • 1. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 439449.
    2. 2)
      • 2. Houssamo, I., Locment, F., Sechilariu, M.: ‘Maximum power tracking for photovoltaic power system: development and experimental comparison of two algorithms’, IET Renew. Energy, 2010, 35, pp. 23812387.
    3. 3)
      • 3. Faraji, R., Rouholamini, A., Naji, H.R., et al: ‘FPGA-based real time incremental conductance maximum power point tracking controller for photovoltaic systems’, IET Power Electron., 2014, 7, (5), pp. 12941304.
    4. 4)
      • 4. Mohd Zainuri, M.A.A., Mohd Radzi, M.A., Soh, A.C., et al: ‘Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc-dc converter’, IET Renew. Power Gener., 2014, 8, (2), pp. 183194.
    5. 5)
      • 5. Andrejasic, T., Jankovec, M., Topic, M.: ‘Comparison of direct maximum power point tracking algorithms using EN 50530 dynamic test procedure’, IET Renew. Power Gener., 2011, 5, (4), pp. 281286.
    6. 6)
      • 6. Jain, S., Agarwal, V.: ‘Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems’, IET Electr. Power Appl., 2007, 1, (5), pp. 753762.
    7. 7)
      • 7. Tafticht, T., Agbossou, K., Doumbia, E.L., et al: ‘An improved maximum power point tracking method for photovoltaic systems’, IET Renew. Energy, 2008, 33, pp. 15081516.
    8. 8)
      • 8. Patel, H., Agarwal, V.: ‘Maximum power point tracking scheme for PV systems operating under partially shaded conditions’, IEEE Trans. Ind. Electron., 2008, 55, (4), pp. 16891698.
    9. 9)
      • 9. Syafaruddin Karatepe, E., Hiyama, T.: ‘Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions’, IET Renew. Power Gener., 2009, 3, (2), pp. 239253.
    10. 10)
      • 10. Koutroulis, E., Blaabjerg, F.: ‘A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions’, IEEE J. Photovolt., 2012, 2, (2), pp. 184190.
    11. 11)
      • 11. Nguyen, T.L., Low, K.S.: ‘A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 34563467.
    12. 12)
      • 12. Kobayashi, K., Takano, I., Sawada, Y.: ‘A study on a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions’. Proc. IEEE Power Eng. Soc. General Meeting, July 2003, pp. 26122617.
    13. 13)
      • 13. Boztepe, M., Guinjoan, F., Velasco-Quesada, G., et al: ‘Global MPPT scheme for photovoltaic string inverters based on restricted voltage window search algorithm’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 33023312.
    14. 14)
      • 14. Ishaque, K., Salam, Z., Amjad, M., et al: ‘An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 36273638.
    15. 15)
      • 15. Jhang, J.H., Tian, I.S.: ‘A maximum power point tracking method based on perturb-and-observe combined with particle swarm optimization’, IEEE J. Photovolt., 2014, 4, (2), pp. 626633.
    16. 16)
      • 16. Ishaque, K., Salam, Z.: ‘A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition’, IEEE Trans. Ind. Electron., 2012, 60, (8), pp. 31953206.
    17. 17)
      • 17. Liu, Y.H., Huang, S.C., Huang, J.W., et al: ‘A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions’, IEEE Trans. Energy Convers., 2012, 27, (4), pp. 10271035.
    18. 18)
      • 18. Clerc, M., Kennedy, J.: ‘The particle swarm – explosion, stability, and convergence in a multidimensional complex space’, IEEE Trans. Evol. Comput., 2002, 6, (1), pp. 5873.
    19. 19)
      • 19. Kollimalla, S.K., Mishra, M.K.: ‘Variable perturbation size adaptive P&O MPPT algorithm for sudden changes in irradiance’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 718728.
    20. 20)
      • 20. Villalva, M.G., de Siqueira, T.G., Ruppert, E.: ‘Voltage regulation of photovoltaic arrays: small-signal analysis and control design’, IET Power Electron., 2010, 3, (6), pp. 869880.

Related content

This is a required field
Please enter a valid email address