http://iet.metastore.ingenta.com
1887

Probabilistic transmission expansion planning for increasing wind power penetration

Probabilistic transmission expansion planning for increasing wind power penetration

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Wind power is one of the promising renewable energy resources to achieve energy sustainability. Its growth poses increasing financial and technical challenges to power systems, mainly due to the wind intermittency. Existing transmission networks may require infrastructure investment, in order to maintain the economical, secure and reliable operations of power systems with increasing wind power penetration. This study proposes a stochastic transmission expansion planning (TEP) framework to assess the impacts of wind power penetration and demand response incorporation. A risk constraint on load curtailment is introduced and its effect on TEP solutions is investigated. Also, to reduce the complexity and size the formulated TEP problem, a decomposition-based approach is adopted. According to the numerical results on the Garver's six-bus and the modified IEEE 30-bus systems, the solutions of TEP are subject to the variation of wind power characteristics and cannot be determined straightforward. Hence risk-analysis should be carried out to guide transmission investment with increased flexibility. The incorporation of wind power uncertainty increases the total cost and expected energy not supplied, which can be mitigated by the proposed TEP approach.

References

    1. 1)
      • 1. Ugranli, F., Karatepe, E.: ‘Transmission expansion planning for wind turbine integrated power systems considering contingency’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 14761485.
    2. 2)
      • 2. Javadi, M.S., Saniei, M., Mashhadi, H.R., et al: ‘Multi-objective expansion planning approach: distant wind farms and limited energy resources integration’, IET Renew. Power Gener., 2013, 7, (6), pp. 652668.
    3. 3)
      • 3. Billinton, R., Yi, G., Karki, R.: ‘Application of a joint deterministic-probabilistic criterion to wind integrated bulk power system Planning’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 13841392.
    4. 4)
      • 4. Heejung, P., Baldick, R.: ‘Transmission planning under uncertainties of wind and load: sequential approximation approach’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 23952402.
    5. 5)
      • 5. Gu, Y., McCalley, J.D., Ming, N.: ‘Coordinating large-scale wind integration and transmission planning’, IEEE Trans. Sustain. Energy, 2012, 3, (4), pp. 652659.
    6. 6)
      • 6. Arabali, A., Ghofrani, M., Etezadi-Amoli, M., et al: ‘A multi-objective transmission expansion planning framework in deregulated power systems with wind generation’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 30033011.
    7. 7)
      • 7. Munoz, C., Sauma, E., Contreras, J., et al: ‘Impact of high wind power penetration on transmission network expansion planning’, IET Gener. Transm. Distrib., 2012, 6, (12), pp. 12811291.
    8. 8)
      • 8. Rahimi, F., Ipakchi, A.: ‘Demand response as a market resource under the smart grid paradigm’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 8288.
    9. 9)
      • 9. Zhao, C., Wang, J., Watson, J., et al: ‘Multi-stage robust unit commitment considering wind and demand response uncertainties’, IEEE Trans. Smart Grid, 2013, 28, (3), pp. 27082717.
    10. 10)
      • 10. Li, C.X., Dong, Z.Y., Chen, G., et al: ‘Flexible transmission expansion planning associated with large-scale wind farms integration considering demand response’, IET Gener. Transm. Distib., 2015, 9, (15), pp. 22762283.
    11. 11)
      • 11. Abdollahi, A., Moghaddam, M.P., Rashidinejad, M., et al: ‘Investigation of economic and environmental-driven demand response measures incorporating UC’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 1225.
    12. 12)
      • 12. Linares, P.: ‘Multiple criteria decision making and risk analysis as risk management tools for power system planning’, IEEE Trans. Power Syst., 2002, 17, (3), pp. 895900.
    13. 13)
      • 13. Zhao, J.H., Dong, Z.Y., Lindsay, P., et al: ‘Flexible transmission expansion planning with uncertainties in an electricity Market’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 479488.
    14. 14)
      • 14. Zhao, J.H., Foster, J., Dong, Z.Y., et al: ‘Flexible transmission network planning considering distributed generation impacts’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 14341443.
    15. 15)
      • 15. Sauma, E.E., Traub, F., Vera, J.: ‘A robust optimization approach to assess the effect of delays in the connection-to-the-grid time of new generation power plants over transmission expansion planning’, J. Ann. Oper. Res., 2015, 229, (1), pp. 703741.
    16. 16)
      • 16. Hemmati, R., Hooshmand, R.A., Khodabakhshian, A.: ‘Market based transmission expansion and reactive power planning with consideration of wind and load uncertainties’, Renew. Sustain. Energy Rev., 2014, 29, pp. 110.
    17. 17)
      • 17. Silva, I.J., Rider, M.J., Romero, R., et al: ‘Transmission network expansion planning considering uncertainty in demand’, IEEE Trans. Power Syst., 2006, 21, (4), pp. 15651573.
    18. 18)
      • 18. Buygi, M.O., Balzer, G., Shanechi, H.M., et al: ‘Market-based transmission expansion planning’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 20602067.
    19. 19)
      • 19. Orfanos, G.A., Georgilakis, P., Hatziargyriou, N.D.: ‘Transmission expansion planning of systems with increasing wind power integration’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 13551362.
    20. 20)
      • 20. Alizadeh, B., Dehghan, S., Amjady, N., et al: ‘Robust transmission system expansion considering planning uncertainties’, IET Gener. Transm. Distrib., 2013, 7, (11), pp. 13181331.
    21. 21)
      • 21. Sauma, E.E., Oren, S.S.: ‘Proactive planning and valuation of transmission investments in restructured electricity markets’, J. Regul. Econ., 2006, 30, (3), pp. 358387.
    22. 22)
      • 22. Sauma, E.E., Oren, S.S.: ‘Economic criteria for planning transmission investment in restructured electricity markets’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 13941405.
    23. 23)
      • 23. Sauma, E.E.: ‘Intertemporal planning of transmission expansions in restructured electricity markets’, J. Energy Eng., 2009, 135, (3), pp. 7382.
    24. 24)
      • 24. Pozo, D., Contreras, J., Sauma, E.E.: ‘If you build it, he will come: anticipative power transmission planning’, Energy Econom., 2013, 36, pp. 135146.
    25. 25)
      • 25. Munoz, F.D., Sauma, E.E., Hobbs, B.F.: ‘Approximations in power transmission planning: implications for the cost and performance of renewable portfolio standards’, J. Regul. Econ., 2013, 43, (3), pp. 305338.
    26. 26)
      • 26. Munoz, F.D., Hobbs, B.F., Kasina, S.: ‘Efficient proactive transmission planning to accommodate renewables’. Proc. IEEE PES General Meeting, 2012, pp. 17.
    27. 27)
      • 27. Rahmani, M., Romero, R., Rider, M.J.: ‘Risk/investment-driven transmission expansion planning with multiple scenarios’, IET Gener. Transm. Distrib., 2013, 7, (2), pp. 154165.
    28. 28)
      • 28. Khodaei, A., Shahidehpour, M., Wu, L., et al: ‘Coordination of short-term operation constraints in multi-area expansion planning’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 22422250.
    29. 29)
      • 29. Roh, J.H., Shahidehpour, M., Yong, F.: ‘Market-based coordination of transmission and generation capacity planning’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 14061419.
    30. 30)
      • 30. Australian Energy Market Operator (AEMO). Available at: http://www.aemo.com.au/.
    31. 31)
      • 31. Nguyen, D.T., Negnevitsky, M., Groot, M.d.: ‘Market-based demand response scheduling in a degregulated environment’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 19481956.
    32. 32)
      • 32. Abdi, H., Dehnavi, E., Mohammadi, F.: ‘Dynamic economic dispatch problem integrated with demand response (DEDDR) considering non-linear responsive load models’, IEEE Trans. Smart Grid, 2016, 7, (6), pp. 25862595.
    33. 33)
      • 33. Bludszuweit, H., Dominguez-Navarro, J.A., Llombart, A.: ‘Statistical analysis of wind power forecast error’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 983991.
    34. 34)
      • 34. Ghofrani, M., Arabali, A., Etezadi-Amoli, M., et al: ‘Energy storage application for performance enhancement of wind integration’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 48034811.
    35. 35)
      • 35. Billinton, R., Allan, R.: ‘Reliability evaluation of power systems’ (Plenum Press, New York, 1996, 2nd edn.).
    36. 36)
      • 36. Khodaei, A., Shahidehpour, M., Kamalinia, S.: ‘Transmission switching in expansion planning’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 17221733.
    37. 37)
      • 37. Romero, R., Monticelli, A., Garcia, A., et al: ‘Test systems and mathematical models for transmission network expansion planning’, IET Gener. Transm. Distib., 2002, 149, (1), pp. 2736.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0794
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0794
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address