http://iet.metastore.ingenta.com
1887

access icon openaccess Comparison of solar radiation and PV generation variability: system dispersion in the UK

Loading full text...

Full text loading...

/deliver/fulltext/iet-rpg/11/5/IET-RPG.2016.0768.html;jsessionid=2u4doiegql561.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-rpg.2016.0768&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. https://www.gov.uk/government/statistics/solar-photovoltaics-deployment, accessed on 31 August 16.
    2. 2)
      • 2. Bennet, P.: ‘National grid: more than 10 GW of solar will overload UK grid’, Sol. Power Portal, 2012. Available at http://www.solarpowerportal.co.uk/news/report_uk_to_install_8gw_of_solar_by_2016_2356.
    3. 3)
      • 3. Farrel, S.: ‘UK electricity grid holds back renewable energy, solar trade body warns’, Guardian, 2015. Available at https://www.theguardian.com/business/2015/may/10/uk-electricity-grid-renewable-energy-solar-trade-association.
    4. 4)
      • 4. Torpey, J.: ‘Utility experiences in large scale and distributed solar PV in the U.S.APVA Grid Integration Workshop CSIRO Melbourne, Sunpower Corporation, 2011.
    5. 5)
      • 5. Remund, J., Calhau, C., Perret, L., et al: ‘Characterization of the spatio-temporal variations and ramp rates of solar radiation and PV’. Report, IEA-PVPS T14-05:2015I, 2015.
    6. 6)
      • 6. Frearson, L., Rodden, P., Blackwell, J., et al: ‘Investigating the impact of solar radiation on grid stability with dispersed PV generation’. 31st EUPVSEC, 2015, pp. 29812987.
    7. 7)
      • 7. Lave, M., Kleissl, J.: ‘Solar variability of four sites across the state of Colorado’, Renew. Energy, 2010, 35, (12), pp. 28672873.
    8. 8)
      • 8. Perez, R., Hoff, T.: ‘Solar resource variability’, in Kleissl, J. (ED.): ‘Solar energy forecasting and resource assessment’ (Academic Press, Oxford, 2013, 1st edn.), pp. 133150, ch. 6.
    9. 9)
      • 9. Hoff, T., Perez, R.: ‘Modeling PV fleet output variability’, Sol. Energy, 2012, 86, pp. 21772189.
    10. 10)
      • 10. Lave, M., Kleissl, J.: ‘Cloud speed impact on solar variability scaling – application to the wavelet variability model’, Sol. Energy, 2013, 91, pp. 1121.
    11. 11)
      • 11. Perez, R., Hoff, T.E.: ‘Mitigating short-term PV output intermittency’. 28th EUPVSEC, 2013, pp. 37193726.
    12. 12)
      • 12. Remund, J., Calhau, C., Marcel, D., et al: ‘Spatio-temporal variability of PV production’. 31st EUPVSEC, 2015, pp. 20882092.
    13. 13)
      • 13. Mills, A., Wiser, R.: ‘Implications of wide-area geographic diversity for short-term variability of solar power’. LBNL Report, 3884E, 2010.
    14. 14)
      • 14. Marcos, J., Morroyo, L., Lorenzo, E., et al: ‘Smoothing of PV power fluctuations by geographical dispersion’, Prog. Photovolt., Res. Appl., 2012, 20, pp. 226237.
    15. 15)
      • 15. Li, L., Bian, L., Rogerson, P., et al: ‘Point pattern analysis for clusters influenced by linear features: an application for mosquito larval sites’, Trans. GIS, 2015, 19, (6), pp. 835847.
    16. 16)
      • 16. Loo, B.P.Y., Yao, S., Wu, J.: ‘Spatial point analysis of road crashes in Shanghai: a GIS-based network kernel density method’. The 19th Int. Conf. on GeoInformatics, (Geoinformatics 2011), Shanghai, China, 24–26 June 2011. In Conf. Proc., 2011, pp. 16. Available at http://www.hdl.handle.net/10722/141610.
    17. 17)
      • 17. van Lieshout, M.N.M., Stein, A.: ‘Earthquake modelling at the country level using aggregated spatio-temporal point processes’, Math. Geosci., 2012, 44, (3), pp. 309326, doi: 10.1007/s11004–011–9380–3.
    18. 18)
      • 18. Rowley, P., Leicester, P., Palmer, D., et al: ‘Multi-domain analysis of photovoltaic impacts via integrated spatial and probabilistic modelling’, IET Renew. Power Gener., 2015, 9, (5), pp. 424431.
    19. 19)
      • 19. Met Office (2012): Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-current). NCAS British Atmospheric Data Centre, 2016. Available at http://www.catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0.
    20. 20)
      • 20. https://www.ordnancesurvey.co.uk/opendatadownload/products.html, accessed on 26 June 16.
    21. 21)
      • 21. http://www.magic.defra.gov.uk/Dataset_Download_Summary.htm, accessed on 26 June 16.
    22. 22)
      • 22. Flood Map for Planning (Rivers and Sea) Flood Zone 2, April2016. Available at http://www.environment.data.gov.uk/ds/catalogue/#/86ec354f-d465-11e4-b09e-f0def148f590, accessed on 26 June 16.
    23. 23)
      • 23. Hagenauer, J.: ‘Weighted merge context for clustering and quantizing spatial data with self-organizing neural networks’, J. Geogr. Syst., 2016, 18, (1), pp. 115, doi: 10.1007/s10109-015-0220-8.
    24. 24)
      • 24. Hagenauer, J., Helbich, M.: ‘SPAWNN: a toolkit for spatial analysis with self-organizing neural networks’, Transactions in GIS, 2016, 20, (5), pp. 755775, doi: 10.1111/tgis.12180.
    25. 25)
      • 25. Datta, B., Durand, F., Laforge, S., et al: ‘Preliminary hydrogeologic modeling and optimal monitoring network design for a contaminated abandoned mine site area: application of developed monitoring network design software’, J. Water Resour. Prot., 2016, 8, pp. 4664.
    26. 26)
      • 26. Basse, R.M., Charif, O., Bodis, K.: ‘Spatial and temporal dimensions of land use change in cross border region of Luxembourg. Development of a hybrid approach integrating GIS, cellular automata and decision learning tree models’, Appl. Geogr., 2016, 67, pp. 94108.
    27. 27)
      • 27. Qi, L., Zheng, Z.: ‘Trajectory prediction of vessels based on data mining and machine learning’, J. Digit. Inf. Manage., 2016, 14, (1), pp. 3340.
    28. 28)
      • 28. Anselin, L.: ‘Local indicators of spatial association – LISA’, Geogr. Anal., 1995, 27, (2), pp. 1193.
    29. 29)
      • 29. Getis, A., Ord, J.K.: ‘The analysis of spatial association by use of distance statistics’, Geogr. Anal., 1992, 24, (3), pp. 189206.
    30. 30)
      • 30. Ord, J.K., Getis, A.: ‘Local spatial autocorrelation statistics: distributional issues and an application’, Geogr. Anal., 1995, 27, (4), pp. 286306.
    31. 31)
      • 31. Renard, F.: ‘Local influence of south–east France topography and land cover on the distribution and characteristics of intense rainfall cells’, Theor. Appl. Climatol., 2016, pp. 11, doi: 10.1007/s00704-015-1698-1.
    32. 32)
      • 32. Raab, A., Schneider, A., Bonhage, A., et al: ‘Spatial analysis of charcoal kiln remains in the former royal forest district Tauer (Lower Lusatia, North German Lowlands)’, Geophysical Research Abstracts, 2016, 18, EGU2016-5610, EGU General Assembly 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0768
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0768
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address