access icon free Adaptive reference voltage-based MPPT technique for PV applications

The constant voltage (CV) for maximum power point tracking (MPPT) technique is considered one of the most commonly used techniques in the photovoltaic (PV) applications. This study is aimed at proposing an adaptive reference voltage-based MPPT technique (ARV) to improve the performance of the CV technique by making it adaptable to weather conditions. The RV for MPPT is adapted according to the measured radiation and temperature levels. The operating range of the radiation at a given temperature is divided into number of divisions and the corresponding RV is recorded off-line in a truth table. The difference between the reference and measured PV voltages is compensated using proportional–integral controller to generate suitable duty ratio to the boost converter. Performance assessment of the CV technique after being improved covers time response, MPPT efficiency, oscillation and stability. The results present performance improvement by fast time response to reach steady-state value, more stable operation with no oscillation and high MPPT efficiency as compared with the CV technique without the proposed improvement.

Inspec keywords: maximum power point trackers; compensation; photovoltaic power systems; PI control; power generation control; power system stability

Other keywords: MPPT efficiency; the boost converter; reference PV voltage; weather conditions; PV applications; photovoltaic applications; measured temperature level; CV technique; duty ratio; constant voltage; measured radiation level; proportional-integral controller; measured PV voltage; adaptive reference voltage-based MPPT technique; maximum power point tracking; time response

Subjects: Stability in control theory; DC-DC power convertors; Solar power stations and photovoltaic power systems; Control of electric power systems; Power system control

References

    1. 1)
      • 3. Zainuri, M.A.A.M., Radzi, M.A.M., Soh, A.C., et al: ‘Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc–dc converter’, IET Renew. Power Gener., 2014, 8, (2), pp. 183194.
    2. 2)
      • 24. Pandey, A., Dasgupta, N., Mukerjee, A.K.: ‘A simple single-sensor MPPT solution’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 698700.
    3. 3)
      • 1. Solanki, C.S.: ‘Solar photovoltaics: fundamentals, technologies and applications’ (Delhi, PHI Learning Pvt. Ltd., 2015, 3rd edn.).
    4. 4)
      • 37. Kadri, R., Gaubert, J.P., Champenois, G.: ‘An improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 6675.
    5. 5)
      • 41. Black, N., Moore, S.: Gauss–Seidel Method - From MathWorld - A Wolfram Web Resource: created by Weisstein, Eric W.’. Available at http://www.mathworld.wolfram.com/Gauss-SeidelMethod.html, 2002.
    6. 6)
      • 27. De Carvalho, P., Pontes, R., Oliveira, D., et al: ‘Control method of a photovoltaic powered reverse osmosis plant without batteries based on maximum power point tracking’. Proc. Conf. Exposition Transmission and Distribution, Latin America, 2004, pp. 137142.
    7. 7)
      • 8. Roger, M., Ventre, J.: ‘Photovoltaic systems engineering’ (The CRC Press, Boca Raton FL, USA, 2000, 3rd edn.).
    8. 8)
      • 9. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Convers. EC, 2007, 22, (2), pp. 439449.
    9. 9)
      • 19. Femia, N., Petrone, G., Spagnuolo, G., et al: ‘Optimizing duty-cycle perturbation of P&O MPPT technique’. Proc. 35th Annual Conf. Power Electronics Specialists, 2004, vol. 3, pp. 19391944.
    10. 10)
      • 33. Xue, D., Chen, Y., Atherton, D.P.: ‘Linear feedback control: analysis and design with MATLAB’,: ‘Advanced in design and control’ (Siam, Philadelphia, USA, 2007).
    11. 11)
      • 30. Chatterjee, A., Keyhani, A., Kapoor, D.: ‘Identification of photovoltaic source models’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 883889.
    12. 12)
      • 10. Dolara, A., Faranda, R., Leva, S.: ‘Energy comparison of seven MPPT techniques for PV systems’, J. Electromagn. Anal. Appl., 2009, 1, (3), pp. 152162.
    13. 13)
      • 36. Villalva, M.G., Gazoli, J.R., Ruppert, F.E.: ‘Comprehensive approach to modeling and simulation of photovoltaic arrays’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 11981208.
    14. 14)
      • 16. Wu, W., Pongratananukul, N., Qiu, W., et al: ‘DSP-based multiple peak power tracking for expandable power system’. Proc. 18th Annual Conf. Exposition Applied Power Electronics, 2003, pp. 525530.
    15. 15)
      • 28. Zhihao, Y., Xiaobo, W.: ‘Compensation loop design of a photovoltaic system based on constant voltage MPPT’. Proc. Conf. Power and Energy Engineering, Asia Pacific, 2009, pp. 14.
    16. 16)
      • 21. Masoum, M., Dehbonei, H.: ‘Design, construction and testing of a voltage-based maximum power point tracker (VMPPT) for small satellite power supply’. Proc. AIAA/USU Conf. on Small Satellites, 1999, Technical Session XII: Advanced Subsystem or Component Developments II. Available at http://digitalcommons.usu.edu/smallsat/1999/all1999/88/.
    17. 17)
      • 46. Hauke, B.: ‘Basic calculation of a boost converter's power stage’ (Dallas, Texas Instruments, 2009), pp. 19.
    18. 18)
      • 39. Rauschenbach, H.: ‘Solar cells array design handbook: the principles and technology of photovoltaic energy conversion’ (Van Nostrand Reinhold, New York, USA, 1980, 1st edn.).
    19. 19)
      • 49. Enrique, J.M., Andújar, J.M., Bohórquez, M.A.: ‘A reliable, fast and low cost maximum power point tracker for photovoltaic applications’, Sol. Energy, 2010, 84, (1), pp. 7989.
    20. 20)
      • 17. Xiao, W., Dunford, W.G.: ‘A modified adaptive hill climbing MPPT method for photovoltaic power systems’. Proc. 35th Annual Conf. Power Electronics Specialists, 2004, vol. 3, pp. 19571963.
    21. 21)
      • 35. Campbell, R.C.: ‘A circuit-based photovoltaic array model for power system studies’. Proc. 39th North American Power Symp., 2007, pp. 97101.
    22. 22)
      • 25. Elgendy, M.A., Zahawi, B., Atkinson, D.J.: ‘Comparison of directly connected and constant voltage controlled photovoltaic pumping systems’, IEEE Trans. Sustain. Energy, 2010, 1, (3), pp. 184192.
    23. 23)
      • 2. Faranda, R., Leva, S.: ‘Energy comparison of MPPT techniques for PV systems’, WSEAS Trans. Power Syst., 2008, 3, (6), pp. 446455.
    24. 24)
      • 13. Noguchi, T., Togashi, S., Nakamoto, R.: ‘Short-current pulse based adaptive maximum-powerpoint tracking for photovoltaic power generation system’. Proc. Int. Symp. Industrial Electronics, 2000, vol. 1, pp. 157162.
    25. 25)
      • 43. Bacha, S., Munteanu, I., Bratcu, A.I.: ‘Power electronic converters modeling and control’, in Grimble, M.J, Johnson, M.A. (Eds): ‘Advanced textbooks in control and signal processing’ (Springer, London, UK, 2014).
    26. 26)
      • 6. Hedayatizadeh, M., Ajabshirchi, Y., Sarhaddi, F., et al: ‘Thermal and electrical assessment of an integrated solar photovoltaic thermal (pv/t) water collector equipped with a compound parabolic concentrator (CPC)’, Int. J. Green Energy, 2013, 10, (5), pp. 494522.
    27. 27)
      • 4. Sefa, I., Altin, N., Ozdemir, S., et al: ‘Fuzzy PI controlled inverter for grid interactive renewable energy systems’, IET Renew. Power Gener., 2015, 9, (7), pp. 729738.
    28. 28)
      • 47. Liu, S.l., Liu, J., Zhang, J.: ‘Research on output voltage ripple of boost DC/DC converters’. Proc. Int. Multi Conf. of Engineers and Computer Scientists, Citeseer, Hong Kong, March 2008, vol. 2, pp. 1921.
    29. 29)
      • 26. Hohm, D., Ropp, M.E.: ‘Comparative study of maximum power point tracking algorithms’, Prog. Photovolt., Res. Appl., 2003, 11, (1), pp. 4762.
    30. 30)
      • 5. Ahmad, Z., Singh, S.: ‘Modeling and control of grid connected photovoltaic system – a review’, Int. J. Emerging Technol. Adv. Eng., 2013, 3, (3), pp. 4049.
    31. 31)
      • 23. Aganah, K.A., Leedy, A.W.: ‘A constant voltage maximum power point tracking method for solar powered systems’. Proc. 43rd Southeastern Symp. System Theory, 2011, pp. 125130.
    32. 32)
      • 18. Haque, A.: ‘Maximum power point tracking (MPPT) scheme for solar photovoltaic system’, Energy Technol. Policy, 2014, 1, (1), pp. 115122.
    33. 33)
      • 45. Sanders, S.R., Noworolski, J.M., Liu, X.Z., et al: ‘Generalized averaging method for power conversion circuits’, IEEE Trans. Power Electron., 1991, 6, (2), pp. 251259.
    34. 34)
      • 22. Leedy, A.W., Guo, L., Aganah, K.A.: ‘A constant voltage MPPT method for a solar powered boost converter with dc motor load’. Proc. Southeastcon, 2012, pp. 16.
    35. 35)
      • 7. Safari, A., Mekhilef, S.: ‘Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 11541161.
    36. 36)
      • 40. Edri, E., Kirmayer, S., Cahen, D., et al: ‘High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite’, J. Phys. Chem. Lett., 2013, 4, (6), pp. 897902.
    37. 37)
      • 15. Abdourraziq, M.A., Maaroufi, M., Ouassaid, M.: ‘A new variable step size INC MPPT method for PV systems’. Proc. Int. Conf. Multimedia Computing and Systems, 2014, pp. 15631568.
    38. 38)
      • 32. Andrejasic, T., Jankovec, M., Topic, M.: ‘Comparison of direct maximum power point tracking algorithms using en 50530 dynamic test procedure’, IET Renew. Power Gener., 2011, 5, (4), pp. 281286.
    39. 39)
      • 34. Mahmoud, Y.A., Xiao, W., Zeineldin, H.H.: ‘A parameterization approach for enhancing PV model accuracy’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 57085716.
    40. 40)
      • 48. Arrigo, J.: ‘Input and output capacitor selection’. Texas Instruments, SLTA055, 2006.
    41. 41)
      • 20. Masoum, M.A., Dehbonei, H., Fuchs, E.F.: ‘Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking’, IEEE Trans. Energy Convers., 2002, 17, (4), pp. 514522.
    42. 42)
      • 42. Ramanarayanan, V.: ‘Course material on switched mode power conversion’ (Indian Institute of Science, 2005, 2nd edn., 2006).
    43. 43)
      • 31. Veerachary, M., Senjyu, T., Uezato, K.: ‘Feedforward maximum power point tracking of PV systems using fuzzy controller’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (3), pp. 969981.
    44. 44)
      • 11. Yuvarajan, S., Xu, S.: ‘Photo-voltaic power converter with a simple maximum-power-point tracker’. Proc. Int. Symp. Circuits and Systems, 2003, vol. 3, p. III-399.
    45. 45)
      • 29. Ma, J., Man, K.L., Ting, T., et al: ‘Dem: direct estimation method for photovoltaic maximum power point tracking’, Procedia Comput. Sci., 2013, 17, pp. 537544.
    46. 46)
      • 44. Modabbernia, M.R., Sahab, A.R., Mirzaee, M.T., et al: ‘The state space average model of boost switching regulator including all of the system uncertainties’, Adv. Mater. Res., Trans Tech Publication Ltd., 2011, 403, pp. 34763483.
    47. 47)
      • 38. Sera, D., Teodorescu, R., Rodriguez, P.: ‘PV panel model based on datasheet values’. Proc. Int. Symp. Industrial Electronics, 2007, pp. 23922396.
    48. 48)
      • 12. Noguchi, T., Togashi, S., Nakamoto, R.: ‘Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system’, IEEE Trans. Ind. Electron., 2002, 49, (1), pp. 217223.
    49. 49)
      • 14. Liu, F., Duan, S., Liu, F., et al: ‘A variable step size INC MPPT method for PV systems’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 26222628.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0749
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0749
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading