http://iet.metastore.ingenta.com
1887

Adaptive reference voltage-based MPPT technique for PV applications

Adaptive reference voltage-based MPPT technique for PV applications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The constant voltage (CV) for maximum power point tracking (MPPT) technique is considered one of the most commonly used techniques in the photovoltaic (PV) applications. This study is aimed at proposing an adaptive reference voltage-based MPPT technique (ARV) to improve the performance of the CV technique by making it adaptable to weather conditions. The RV for MPPT is adapted according to the measured radiation and temperature levels. The operating range of the radiation at a given temperature is divided into number of divisions and the corresponding RV is recorded off-line in a truth table. The difference between the reference and measured PV voltages is compensated using proportional–integral controller to generate suitable duty ratio to the boost converter. Performance assessment of the CV technique after being improved covers time response, MPPT efficiency, oscillation and stability. The results present performance improvement by fast time response to reach steady-state value, more stable operation with no oscillation and high MPPT efficiency as compared with the CV technique without the proposed improvement.

References

    1. 1)
      • 1. Solanki, C.S.: ‘Solar photovoltaics: fundamentals, technologies and applications’ (Delhi, PHI Learning Pvt. Ltd., 2015, 3rd edn.).
    2. 2)
      • 2. Faranda, R., Leva, S.: ‘Energy comparison of MPPT techniques for PV systems’, WSEAS Trans. Power Syst., 2008, 3, (6), pp. 446455.
    3. 3)
      • 3. Zainuri, M.A.A.M., Radzi, M.A.M., Soh, A.C., et al: ‘Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc–dc converter’, IET Renew. Power Gener., 2014, 8, (2), pp. 183194.
    4. 4)
      • 4. Sefa, I., Altin, N., Ozdemir, S., et al: ‘Fuzzy PI controlled inverter for grid interactive renewable energy systems’, IET Renew. Power Gener., 2015, 9, (7), pp. 729738.
    5. 5)
      • 5. Ahmad, Z., Singh, S.: ‘Modeling and control of grid connected photovoltaic system – a review’, Int. J. Emerging Technol. Adv. Eng., 2013, 3, (3), pp. 4049.
    6. 6)
      • 6. Hedayatizadeh, M., Ajabshirchi, Y., Sarhaddi, F., et al: ‘Thermal and electrical assessment of an integrated solar photovoltaic thermal (pv/t) water collector equipped with a compound parabolic concentrator (CPC)’, Int. J. Green Energy, 2013, 10, (5), pp. 494522.
    7. 7)
      • 7. Safari, A., Mekhilef, S.: ‘Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 11541161.
    8. 8)
      • 8. Roger, M., Ventre, J.: ‘Photovoltaic systems engineering’ (The CRC Press, Boca Raton FL, USA, 2000, 3rd edn.).
    9. 9)
      • 9. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Convers. EC, 2007, 22, (2), pp. 439449.
    10. 10)
      • 10. Dolara, A., Faranda, R., Leva, S.: ‘Energy comparison of seven MPPT techniques for PV systems’, J. Electromagn. Anal. Appl., 2009, 1, (3), pp. 152162.
    11. 11)
      • 11. Yuvarajan, S., Xu, S.: ‘Photo-voltaic power converter with a simple maximum-power-point tracker’. Proc. Int. Symp. Circuits and Systems, 2003, vol. 3, p. III-399.
    12. 12)
      • 12. Noguchi, T., Togashi, S., Nakamoto, R.: ‘Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system’, IEEE Trans. Ind. Electron., 2002, 49, (1), pp. 217223.
    13. 13)
      • 13. Noguchi, T., Togashi, S., Nakamoto, R.: ‘Short-current pulse based adaptive maximum-powerpoint tracking for photovoltaic power generation system’. Proc. Int. Symp. Industrial Electronics, 2000, vol. 1, pp. 157162.
    14. 14)
      • 14. Liu, F., Duan, S., Liu, F., et al: ‘A variable step size INC MPPT method for PV systems’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 26222628.
    15. 15)
      • 15. Abdourraziq, M.A., Maaroufi, M., Ouassaid, M.: ‘A new variable step size INC MPPT method for PV systems’. Proc. Int. Conf. Multimedia Computing and Systems, 2014, pp. 15631568.
    16. 16)
      • 16. Wu, W., Pongratananukul, N., Qiu, W., et al: ‘DSP-based multiple peak power tracking for expandable power system’. Proc. 18th Annual Conf. Exposition Applied Power Electronics, 2003, pp. 525530.
    17. 17)
      • 17. Xiao, W., Dunford, W.G.: ‘A modified adaptive hill climbing MPPT method for photovoltaic power systems’. Proc. 35th Annual Conf. Power Electronics Specialists, 2004, vol. 3, pp. 19571963.
    18. 18)
      • 18. Haque, A.: ‘Maximum power point tracking (MPPT) scheme for solar photovoltaic system’, Energy Technol. Policy, 2014, 1, (1), pp. 115122.
    19. 19)
      • 19. Femia, N., Petrone, G., Spagnuolo, G., et al: ‘Optimizing duty-cycle perturbation of P&O MPPT technique’. Proc. 35th Annual Conf. Power Electronics Specialists, 2004, vol. 3, pp. 19391944.
    20. 20)
      • 20. Masoum, M.A., Dehbonei, H., Fuchs, E.F.: ‘Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking’, IEEE Trans. Energy Convers., 2002, 17, (4), pp. 514522.
    21. 21)
      • 21. Masoum, M., Dehbonei, H.: ‘Design, construction and testing of a voltage-based maximum power point tracker (VMPPT) for small satellite power supply’. Proc. AIAA/USU Conf. on Small Satellites, 1999, Technical Session XII: Advanced Subsystem or Component Developments II. Available at http://digitalcommons.usu.edu/smallsat/1999/all1999/88/.
    22. 22)
      • 22. Leedy, A.W., Guo, L., Aganah, K.A.: ‘A constant voltage MPPT method for a solar powered boost converter with dc motor load’. Proc. Southeastcon, 2012, pp. 16.
    23. 23)
      • 23. Aganah, K.A., Leedy, A.W.: ‘A constant voltage maximum power point tracking method for solar powered systems’. Proc. 43rd Southeastern Symp. System Theory, 2011, pp. 125130.
    24. 24)
      • 24. Pandey, A., Dasgupta, N., Mukerjee, A.K.: ‘A simple single-sensor MPPT solution’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 698700.
    25. 25)
      • 25. Elgendy, M.A., Zahawi, B., Atkinson, D.J.: ‘Comparison of directly connected and constant voltage controlled photovoltaic pumping systems’, IEEE Trans. Sustain. Energy, 2010, 1, (3), pp. 184192.
    26. 26)
      • 26. Hohm, D., Ropp, M.E.: ‘Comparative study of maximum power point tracking algorithms’, Prog. Photovolt., Res. Appl., 2003, 11, (1), pp. 4762.
    27. 27)
      • 27. De Carvalho, P., Pontes, R., Oliveira, D., et al: ‘Control method of a photovoltaic powered reverse osmosis plant without batteries based on maximum power point tracking’. Proc. Conf. Exposition Transmission and Distribution, Latin America, 2004, pp. 137142.
    28. 28)
      • 28. Zhihao, Y., Xiaobo, W.: ‘Compensation loop design of a photovoltaic system based on constant voltage MPPT’. Proc. Conf. Power and Energy Engineering, Asia Pacific, 2009, pp. 14.
    29. 29)
      • 29. Ma, J., Man, K.L., Ting, T., et al: ‘Dem: direct estimation method for photovoltaic maximum power point tracking’, Procedia Comput. Sci., 2013, 17, pp. 537544.
    30. 30)
      • 30. Chatterjee, A., Keyhani, A., Kapoor, D.: ‘Identification of photovoltaic source models’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 883889.
    31. 31)
      • 31. Veerachary, M., Senjyu, T., Uezato, K.: ‘Feedforward maximum power point tracking of PV systems using fuzzy controller’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (3), pp. 969981.
    32. 32)
      • 32. Andrejasic, T., Jankovec, M., Topic, M.: ‘Comparison of direct maximum power point tracking algorithms using en 50530 dynamic test procedure’, IET Renew. Power Gener., 2011, 5, (4), pp. 281286.
    33. 33)
      • 33. Xue, D., Chen, Y., Atherton, D.P.: ‘Linear feedback control: analysis and design with MATLAB’,: ‘Advanced in design and control’ (Siam, Philadelphia, USA, 2007).
    34. 34)
      • 34. Mahmoud, Y.A., Xiao, W., Zeineldin, H.H.: ‘A parameterization approach for enhancing PV model accuracy’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 57085716.
    35. 35)
      • 35. Campbell, R.C.: ‘A circuit-based photovoltaic array model for power system studies’. Proc. 39th North American Power Symp., 2007, pp. 97101.
    36. 36)
      • 36. Villalva, M.G., Gazoli, J.R., Ruppert, F.E.: ‘Comprehensive approach to modeling and simulation of photovoltaic arrays’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 11981208.
    37. 37)
      • 37. Kadri, R., Gaubert, J.P., Champenois, G.: ‘An improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 6675.
    38. 38)
      • 38. Sera, D., Teodorescu, R., Rodriguez, P.: ‘PV panel model based on datasheet values’. Proc. Int. Symp. Industrial Electronics, 2007, pp. 23922396.
    39. 39)
      • 39. Rauschenbach, H.: ‘Solar cells array design handbook: the principles and technology of photovoltaic energy conversion’ (Van Nostrand Reinhold, New York, USA, 1980, 1st edn.).
    40. 40)
      • 40. Edri, E., Kirmayer, S., Cahen, D., et al: ‘High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite’, J. Phys. Chem. Lett., 2013, 4, (6), pp. 897902.
    41. 41)
      • 41. Black, N., Moore, S.: Gauss–Seidel Method - From MathWorld - A Wolfram Web Resource: created by Weisstein, Eric W.’. Available at http://www.mathworld.wolfram.com/Gauss-SeidelMethod.html, 2002.
    42. 42)
      • 42. Ramanarayanan, V.: ‘Course material on switched mode power conversion’ (Indian Institute of Science, 2005, 2nd edn., 2006).
    43. 43)
      • 43. Bacha, S., Munteanu, I., Bratcu, A.I.: ‘Power electronic converters modeling and control’, in Grimble, M.J, Johnson, M.A. (Eds): ‘Advanced textbooks in control and signal processing’ (Springer, London, UK, 2014).
    44. 44)
      • 44. Modabbernia, M.R., Sahab, A.R., Mirzaee, M.T., et al: ‘The state space average model of boost switching regulator including all of the system uncertainties’, Adv. Mater. Res., Trans Tech Publication Ltd., 2011, 403, pp. 34763483.
    45. 45)
      • 45. Sanders, S.R., Noworolski, J.M., Liu, X.Z., et al: ‘Generalized averaging method for power conversion circuits’, IEEE Trans. Power Electron., 1991, 6, (2), pp. 251259.
    46. 46)
      • 46. Hauke, B.: ‘Basic calculation of a boost converter's power stage’ (Dallas, Texas Instruments, 2009), pp. 19.
    47. 47)
      • 47. Liu, S.l., Liu, J., Zhang, J.: ‘Research on output voltage ripple of boost DC/DC converters’. Proc. Int. Multi Conf. of Engineers and Computer Scientists, Citeseer, Hong Kong, March 2008, vol. 2, pp. 1921.
    48. 48)
      • 48. Arrigo, J.: ‘Input and output capacitor selection’. Texas Instruments, SLTA055, 2006.
    49. 49)
      • 49. Enrique, J.M., Andújar, J.M., Bohórquez, M.A.: ‘A reliable, fast and low cost maximum power point tracker for photovoltaic applications’, Sol. Energy, 2010, 84, (1), pp. 7989.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0749
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0749
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address