access icon free Peak power detection of PS solar PV panel by using WPSCO

This study introduces a mathematical trajectory based ‘Weibull Pareto sine–cosine optimisation (WPSCO)’ algorithm for the maximum power point tracking (MPPT) in the dynamics as well as in steady-state conditions of a partially shaded (PS) solar photovoltaic (PV) system. This ‘WPSCO’ technique is used for quick and oscillation-free tracking of the global best peak position in a very less number of steps, which is necessary to work in real-time atmospheric conditions. The unique advantage of this algorithm for MPPT problem in PS condition is as it is free from common and generalised problem of the other evolutionary techniques such as longer convergence duration, a large number of search particles, steady-state oscillation, unnecessary computational burden etc., which create power loss and oscillations in output. This hybrid algorithm is tested on different types of PV characteristics of the PS solar PV array by using MATLAB simulator and verified on a developed hardware of the solar PV system. Moreover, the tracking ability is compared with the state-of-the-art methods. The satisfactory steady-state and dynamic performances of the WPSCO algorithm under variable irradiance and temperature levels show the superiority over the state-of-the-art control methods.

Inspec keywords: solar cell arrays; Weibull distribution; maximum power point trackers; Pareto optimisation; photovoltaic power systems

Other keywords: maximum power point tracking; MPPT problem; Matlab simulator; real-time atmospheric conditions; partially shaded solar photovoltaic system; PS solar PV panel; mathematical trajectory-based WPSCO technique; mathematical trajectory-based Weibull Pareto sine-cosine optimisation algorithm; steady-state conditions; peak power detection

Subjects: Solar power stations and photovoltaic power systems; Solar cells and arrays; Other topics in statistics; DC-DC power convertors; Optimisation techniques

References

    1. 1)
      • 9. Hua, C.C., Fang, Y.H., Chen, W.T.: ‘Hybrid maximum power point tracking method with variable step size for photovoltaic systems’, IET Renew. Power Gener., 2016, 10, (2), pp. 127132.
    2. 2)
      • 6. Mohd Zainuri, M.A.A., Mohd Radzi, M.A., Soh, A.C., et al: ‘Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc–dc converter’, IET Renew. Power Gener., 2014, 8, (2), pp. 183194.
    3. 3)
      • 15. Okabe, S., Tsuboi, T., Takami, J.: ‘Reliability evaluation with Weibull distribution on AC withstand voltage test of substation equipment’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (5), pp. 12421251.
    4. 4)
      • 5. Sundareswaran, K., Peddapati, S., Palani, S.: ‘Application of random search method for maximum power point tracking in partially shaded photovoltaic systems’, IET Renew. Power Gener., 2014, 8, (6), pp. 670678.
    5. 5)
      • 11. Ghaffarzadeh, N., Bijani, S.: ‘Dual surface sliding mode controller for photovoltaic systems enhanced by a ripple domain search maximum power point tracking algorithm for fast changing environmental conditions’, IET Renew. Power Gener., 2016, 10, (5), pp. 611622.
    6. 6)
      • 13. Teshome, D., Lee, C.H., Lin, Y.W., et al: ‘A modified firefly algorithm for photovoltaic maximum power point tracking control under partial shading’, IEEE J. Emerging Sel. Top. Power Electron., 2016, PP, (99), p. 1.
    7. 7)
      • 7. Syafaruddin, E., Karatepe, E., Hiyama, T.: ‘Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions’, IET Renew. Power Gener., 2009, 3, (2), pp. 239253.
    8. 8)
      • 10. Zakzouk, N.E., Elsaharty, M.A., Abdelsalam, A.K., et al: ‘Improved performance low-cost incremental conductance PV MPPT technique’, IET Renew. Power Gener., 2016, 10, (4), pp. 561574.
    9. 9)
      • 8. Elobaid, L.M., Abdelsalam, A.K., Zakzouk, E.E.: ‘Artificial neural network-based photovoltaic maximum power point tracking techniques: a survey’, IET Renew. Power Gener., 2015, 9, (8), pp. 10431063.
    10. 10)
      • 4. Lal, V.N., Singh, S.N.: ‘Modified particle swarm optimisation-based maximum power point tracking controller for single-stage utility-scale photovoltaic system with reactive power injection capability’, IET Renew. Power Gener., 2016, 10, (7), pp. 899907.
    11. 11)
      • 16. Hung, H.-N., Lee, P.-C., Lin, Y.-B.: ‘Random number generation for excess life of mobile user residence time’, IEEE Trans. Veh. Technol., 2006, 55, (3), pp. 10451050.
    12. 12)
      • 3. Elgendy, M.A., Atkinson, D.J., Zahawi, B.: ‘Experimental investigation of the incremental conductance maximum power point tracking algorithm at high perturbation rates’, IET Renew. Power Gener., 2016, 10, (2), pp. 133139.
    13. 13)
      • 12. Harrag, A., Messalti, S.: ‘Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller’, Renew. Sustain. Energy Rev., 2015, 49, pp. 12471260.
    14. 14)
      • 2. Piegari, L., Rizzo, R.: ‘Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking’, IET Renew. Power Gener., 2010, 4, (4), pp. 317328.
    15. 15)
      • 14. Koad, R., Zobaa, A.F., El Shahat, A.: ‘A novel MPPT algorithm based on particle swarm optimisation for photovoltaic systems’, IEEE Trans. Sustain. Energy, early access, 2016, 99, pp. 11.
    16. 16)
      • 1. Batzelis, E.I., Georgilakis, P.S., Papathanassiou, S.A.: ‘Energy models for photovoltaic systems under partial shading conditions: a comprehensive review’, IET Renew. Power Gener., 2015, 9, (4), pp. 340349.
    17. 17)
      • 17. Ouyang, L.-Y., Wu, S.-J.: ‘Prediction intervals for an ordered observation from a Pareto distribution’, IEEE Trans. Reliab., 1994, 43, (2), pp. 264269.
    18. 18)
      • 18. Mirjalili, S.: ‘SCA: a sine–cosine algorithm for solving optimization problems’, Knowl.-Based Syst., 2016, 96, pp. 120133.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0733
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0733
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading