access icon free Linear electrical generator topologies for direct-drive marine wave energy conversion- an overview

Wave energy is one of the most attractive forms of renewable energy. The reasons include its promising availability, predictability, persistence, and power density. This study focuses on all linear generator designs and technologies which have been used so far in direct-drive wave energy converters (DD-WECs). Currently, linear permanent magnet generators (LPMG) have been proposed as the most advantageous generator system developed for DD-WECs. After a brief description of linear generator based wave energy converters, all proposed state-of-the-art of LPMG topologies available in the literature are discussed and compared in terms of flux path, core type, location of PMs, and etc. In addition, other linear generator technologies such as linear switched reluctance and linear superconducting generators, as an alternative to LPMGs, are reviewed. Finally, based on the surveyed quantitative comparisons performed in previous works, eight major concepts are evaluated in terms of economic and operational aspects.

Inspec keywords: reluctance generators; linear machines; superconducting machines; wave power plants

Other keywords: renewable energy; linear permanent magnet generators; linear superconducting generators; linear switched reluctance generators; direct-drive marine wave energy conversion; DD-WECs; LPMG topology; linear generator designs; linear electrical generator topology

Subjects: Synchronous machines; Wave power; Linear machines

References

    1. 1)
      • 35. Zhao, W., Liu, X., Chau, K.T., et al: ‘Linear primary permanent magnet vernier machine for wave energy conversion’, IET Electr. Power Appl., 2015, 9, (3), pp. 203212.
    2. 2)
      • 28. Ivanova, I.A., Agren, O., Bernhoff, H., et al: ‘Simulation of wave-energy converter with octagonal linear generator’, IEEE J. Ocean. Eng., 2005, 30, (3), pp. 619629.
    3. 3)
      • 57. Danielsson, O., Leijon, M., Sjostedt, E.: ‘Detailed study of the magnetic circuit in a longitudinal flux permanent-magnet synchronous linear generator’, IEEE Trans. Magn., 2005, 41, (9), pp. 24902495.
    4. 4)
      • 50. Hodgins, N., Keysan, O., McDonald, A., et al: ‘Linear generator for direct drive wave energy applications’. The XIX Int. Conf. on Electrical Machines – ICEM 2010, 2010, pp. 16.
    5. 5)
      • 56. McKeever, P., Crozier, R., Mueller, M., et al: ‘Analysis, design and testing of a novel direct-drive wave energy converter system’, IET Renew. Power Gener., 2013, 7, (5), pp. 565573.
    6. 6)
      • 61. Bianchi, N., Bolognani, S., Cappello, A.D.F.: ‘Reduction of cogging force in PM linear motors by pole-shifting’, IEE Proc. – Electr. Power Appl., 2005, 152, (3), pp. 703709.
    7. 7)
      • 79. Rhinefrank, K., Schacher, A., Prudell, J., et al: ‘Comparison of direct-drive power takeoff systems for ocean wave energy applications’, IEEE J. Ocean. Eng., 2012, 37, (1), pp. 3544.
    8. 8)
      • 8. Faiz, J., Jagari, H.: ‘Accurate modeling of single-sided linear induction motor considers end effect and equivalent thickness’, IEEE Trans. Magn., 2000, 36, (5), pp. 37853790.
    9. 9)
      • 21. Curcic, M., Quaicoe, J.E., Bachmayer, R.: ‘A novel double-sided linear generator for wave energy conversion’. OCEANS 2015, Genova, 2015, pp. 17.
    10. 10)
      • 17. Eriksson, M., Isberg, J., Leijon, M.: ‘Theory and experiment on an elastically moored cylindrical buoy’, IEEE J. Ocean. Eng., 2006, 31, (4), pp. 959963.
    11. 11)
      • 33. Mueller, M.A., Baker, N.J.: ‘Modelling the performance of the vernier hybrid machine’, IEE Proc. – Electr. Power Appl., 2003, 150, (6), pp. 647654.
    12. 12)
      • 74. Du, Y., Chau, K.T., Cheng, M., et al: ‘A linear doubly-salient HTS machine for wave energy conversion’, IEEE Trans. Appl. Supercond., 2011, 21, (3), pp. 11091113.
    13. 13)
      • 30. Ran, L., Mueller, M.A., Ng, C., et al: ‘Power conversion and control for a linear direct drive permanent magnet generator for wave energy’, IET Renew. Power Gener., 2011, 5, (1), pp. 19.
    14. 14)
      • 41. Bianchi, N., Bolognani, S., Dalla Corte, D., et al: ‘Tubular linear permanent magnet motors: an overall comparison’, IEEE Trans. Ind. Appl., 2003, 39, (2), pp. 466475.
    15. 15)
      • 75. Zhang, J., Yu, H., Chen, Q., et al: ‘Design and experimental analysis of AC linear generator with halbach PM arrays for direct-drive wave energy conversion’, IEEE Trans. Appl. Supercond., 2014, 24, (3), pp. 14.
    16. 16)
      • 39. Lu, Q., Ye, Y.: ‘Design and Analysis of Tubular Linear PM Generator’, IEEE Trans. Magn., 2009, 45, (10), pp. 47164719.
    17. 17)
      • 31. Gargov, N.P., Zobaa, A.F.: ‘Multi-phase air-cored tubular permanent magnet linear generator for wave energy converters’, IET Renew. Power Gener., 2012, 6, (3), pp. 171176.
    18. 18)
      • 36. Huang, L., Yu, H., Hu, M., et al: ‘A novel flux-switching permanent-magnet linear generator for wave energy extraction application’, IEEE Trans. Magn., 2011, 47, (5), pp. 10341037.
    19. 19)
      • 54. Ho, S.L., Wang, Q., Niu, S., et al: ‘A novel magnetic-geared tubular linear machine with halbach permanent-magnet arrays for tidal energy conversion’, IEEE Trans. Magn., 2015, 51, (11), pp. 14.
    20. 20)
      • 76. Clifton, P.C.J., McMahon, R.A., Kelly, H.-P.: ‘Design and commissioning of a 30 kW direct drive wave generator’. 5th IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2010), 2010, pp. 245245.
    21. 21)
      • 83. Ching, T.W., Chau, K.T., Li, W.: ‘Power factor improvement of a linear vernier permanent-magnet machine using auxiliary DC field excitation’, IEEE Trans. Magn., 2016, 52, (7), pp. 14.
    22. 22)
      • 45. Szabo, L., Oprea, C.: ‘Wave energy plants for the black sea possible energy converter structures’. 2007 Int. Conf. on Clean Electrical Power, 2007, pp. 306311.
    23. 23)
      • 27. Oprea, C.A., Martis, C.S., Jurca, F.N., et al: ‘Permanent magnet linear generator for renewable energy applications: Tubular vs. four-sided structures’. 2011 Int. Conf. on Clean Electrical Power (ICCEP), 2011, pp. 588592.
    24. 24)
      • 18. Gao, Y., Shao, S., Zou, H., et al: ‘A fully floating system for a wave energy converter with direct-driven linear generator’, Energy, 2016, 95, pp. 99109.
    25. 25)
      • 34. Mueller, M.: ‘A low speed reciprocating permanent magnet generator for direct drive wave energy converters’. Int. Conf. on Power Electronics Machines and Drives, 2002, pp. 468473.
    26. 26)
      • 72. Keysan, O., Mueller, M.A.: ‘A linear superconducting generator for wave energy converters’. 6th IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2012), 2012, pp. B134B134.
    27. 27)
      • 12. Leijon, M., Danielsson, O., Eriksson, M., et al: ‘An electrical approach to wave energy conversion’, Renew. Energy, 2006, 31, (9), pp. 13091319.
    28. 28)
      • 81. Astariz, S., Iglesias, G.: ‘The economics of wave energy: a review’, Renew. Sustain. Energy Rev., 2015, 45, pp. 397408.
    29. 29)
      • 6. Prado, M., Polinder, H.: ‘8 – Direct drive wave energy conversion systems: an introduction’, in Mueller, M., Polinder, H. (Eds.): ‘Electrical drives for direct drive renewable energy systems’ (Woodhead Publishing, 2013), pp. 175194.
    30. 30)
      • 10. Danielsson, O., Leijon, M.: ‘Flux distribution in linear permanent-magnet synchronous machines including longitudinal end effects’, IEEE Trans. Magn., 2007, 43, (7), pp. 31973201.
    31. 31)
      • 5. IEA: ‘Key world energy statistics’ (Paris, 2015), pp. 2427.
    32. 32)
      • 77. http://awsocean.com/technology/aws-iii-multi-cell-wave-power-generator/, accessed July 2016.
    33. 33)
      • 26. Liu, C., Lin, C., Hwang, C., Tu, C.: ‘Compact Model of a Slotless Tubular Linear Generator for Renewable Energy Performance Assessments’. IEEE Trans. Magn., 2010, 46, (6), pp. 14671470.
    34. 34)
      • 44. Mueller, M.A.: ‘Electrical generators for direct drive wave energy converters’, IEE Proc. – Gener. Transm. Distrib., 2002, 149, (4), pp. 446456.
    35. 35)
      • 4. Gunn, K., Stock-Williams, C.: ‘Quantifying the global wave power resource’, Renew. Energy, 2012, 44, pp. 296304.
    36. 36)
      • 80. ‘Metal Prices – Rare Earths’. Available at http://www.metal-pages.com/metalprices/rareearths/, accessed 27 December 2016.
    37. 37)
      • 63. Baatar, N., Yoon, H.S., Pham, M.T., et al: ‘Shape optimal design of a 9-pole 10-slot PMLSM for detent force reduction using adaptive response surface method’, IEEE Trans. Magn., 2009, 45, (10), pp. 45624565.
    38. 38)
      • 58. Faiz, J., Ebrahimi-Salari, M., Shahgholian, G.: ‘Reduction of cogging force in linear permanent-magnet generators’, IEEE Trans. Magn., 2010, 46, (1), pp. 135140.
    39. 39)
      • 11. Falcão, A.F.de O.: ‘Wave energy utilization: A review of the technologies’, Renew. Sustain. Energy Rev., 2010, 14, (3), pp. 899918.
    40. 40)
      • 48. Vermaak, R., Kamper, M.J.: ‘Design aspects of a novel topology air-cored permanent magnet linear generator for direct drive wave energy converters’, IEEE Trans. Ind. Electron., 2012, 59, (5), pp. 21042115.
    41. 41)
      • 37. Du, Y., Chau, K.T., Cheng, M., et al: ‘Design and analysis of linear stator permanent magnet vernier machines’, IEEE Trans. Magn., 2011, 47, (10), pp. 42194222.
    42. 42)
      • 13. Polinder, H., Damen, M.E.C., Gardner, F.: ‘Linear PM generator system for wave energy conversion in the AWS’, IEEE Trans. Energy Convers., 2004, 19, (3), pp. 583589.
    43. 43)
      • 2. López, I., Andreu, J., Ceballos, S., et al: ‘Review of wave energy technologies and the necessary power-equipment’, Renew. Sustain. Energy Rev., 2013, 27, pp. 413434.
    44. 44)
      • 78. Baker, N.J.: ‘Linear generators for direct drive marine renewable energy converters’, 2003, p. 243.
    45. 45)
      • 40. Keysan, O., Mueller, M., McDonald, A., et al: ‘Designing the C-GEN lightweight direct drive generator for wave and tidal energy’, IET Renew. Power Gener., 2012, 6, (3), pp. 161170.
    46. 46)
      • 84. Xu, L., Ji, J., Liu, G., et al: ‘Design and analysis of linear fault-tolerant permanent-magnet vernier machines’, Sci. World J., 2014, 2014, pp. 18.
    47. 47)
      • 49. McDonald, A.S., Mueller, M., Jeffrey, J.G.: ‘Development of a novel permanent magnet linear generator topology for direct-drive wave energy converters’. 4th IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2008), 2008, pp. 8185.
    48. 48)
      • 69. Mendes, R., Calado, M.R.A., Mariano, S.J.P.S.: ‘Analysis of the influence of different topologies on a TLSRG generation performance for WEC’, Eng. Lett., 2014, 22, (4), pp. 202208.
    49. 49)
      • 23. Crozier, R., Mueller, M.: ‘Integrated structural and electromagnetic design of direct-drive linear machines for wave energy’, IET Renew. Power Gener., 2012, 6, (3), pp. 137148.
    50. 50)
      • 67. Du, J., Liang, D., Xu, L., et al: ‘Modeling of a linear switched reluctance machine and drive for wave energy conversion using matrix and tensor approach’, IEEE Trans. Magn., 2010, 46, (6), pp. 13341337.
    51. 51)
      • 59. Kimoulakis, N.M., Kladas, A.G., Tegopoulos, J.A.: ‘Cogging force minimization in a coupled permanent magnet linear generator for sea wave energy extraction applications’, IEEE Trans. Magn., 2009, 45, (3), pp. 12461249.
    52. 52)
      • 64. Pan, J.F., Zou, Y., Cheung, N., et al: ‘On the voltage ripple reduction control of the linear switched reluctance generator for wave energy utilization’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 52985307.
    53. 53)
      • 47. Hodgins, N., Keysan, O., McDonald, A.S., et al: ‘Design and testing of a linear generator for wave-energy applications’, IEEE Trans. Ind. Electron., 2012, 59, (5), pp. 20942103.
    54. 54)
      • 68. Calado, M.R.A., Godinho, P.M.C., Mariano, S.J.P.S.: ‘Design of a new linear generator for wave energy conversion based on analytical and numerical analyses’, J. Renew. Sustain. Energy, 2012, 4, (3), p. 033117.
    55. 55)
      • 86. Qu, R., Liu, Y., Wang, J.: ‘Review of superconducting generator topologies for direct-drive wind turbines’, IEEE Trans. Appl. Supercond., 2013, 23, (3), pp. 52011085201108.
    56. 56)
      • 52. Jian, L., Chau, K.T., Gong, Y., et al: ‘Comparison of coaxial magnetic gears with different topologies’, IEEE Trans. Magn., 2009, 45, (10), pp. 45264529.
    57. 57)
      • 7. Bostrom, C., Waters, R., Lejerskog, E., et al: ‘Study of a wave energy converter connected to a nonlinear load’, IEEE J. Ocean. Eng., 2009, 34, (2), pp. 123127.
    58. 58)
      • 65. Amundarain, M., Alberdi, M., Garrido, A.J., et al: ‘Modeling and simulation of wave energy generation plants: output power control’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 105117.
    59. 59)
      • 43. Hoang, T.-K., Kang, D.-H., Lee, J.-Y.: ‘Comparisons between various designs of transverse flux linear motor in terms of thrust force and normal force’, IEEE Trans. Magn., 2010, 46, (10), pp. 37953801.
    60. 60)
      • 60. Gysen, B.L.J., Meessen, K.J., Paulides, J.J.H., et al: ‘3-D analytical and numerical modeling of tubular actuators with skewed permanent magnets’, IEEE Trans. Magn., 2011, 47, (9), pp. 22002212.
    61. 61)
      • 25. DelliColli, V., Cancelliere, P., Marignetti, F., et al: ‘A tubular-generator drive for wave energy conversion’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 11521159.
    62. 62)
      • 53. Li, W., Chau, K.T., Jiang, J.Z.: ‘Application of linear magnetic gears for pseudo-direct-drive oceanic wave energy harvesting’, IEEE Trans. Magn., 2011, 47, (10), pp. 26242627.
    63. 63)
      • 19. Cappelli, L., Marignetti, F., Mattiazzo, G., et al: ‘Linear tubular permanent-magnet generators for the inertial sea wave energy converter’, IEEE Trans. Ind. Appl., 2014, 50, (3), pp. 18171828.
    64. 64)
      • 15. Polinder, H., Damen, M.E.C., Gardner, F.: ‘Design, modelling and test results of the AWS PM linear generator’, Eur. Trans. Electr. Power, 2005, 15, (3), pp. 245256.
    65. 65)
      • 24. Di Dio, V., Miceli, R., Trapanese, M.: ‘The use of sea waves for generation of electrical energy: a linear tubular asynchronous electrical generator’. Oceans 2007, 2007, pp. 14.
    66. 66)
      • 32. Huang, L., Zhou, S., Liu, Q., et al: ‘Research on a permanent magnet tubular linear generator for direct drive wave energy conversion’, IET Renew. Power Gener., 2014, 8, (3), pp. 281288.
    67. 67)
      • 82. Li, D., Qu, R., Lipo, T.A.: ‘High-power-factor vernier permanent-magnet machines’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 36643674.
    68. 68)
      • 46. Baker, N.J.: ‘Permanent magnet air-cored tubular linear generator for marine energy converters’. Second IEE Int. Conf. on Power Electronics, Machines and Drives, 2004, p. v2862–v2–862.
    69. 69)
      • 62. Liu, C., Yu, H., Hu, M., et al: ‘Detent force reduction in permanent magnet tubular linear generator for direct-driver wave energy conversion’, IEEE Trans. Magn., 2013, 49, (5), pp. 19131916.
    70. 70)
      • 14. Polinder, H., Mecrow, B.C., Jack, A.G., et al: ‘Conventional and TFPM Linear Generators for Direct-Drive Wave Energy Conversion’, IEEE Trans. Energy Convers., 2005, 20, (2), pp. 260267.
    71. 71)
      • 38. Huang, L., Yu, H., Hu, M., et al: ‘Research on a tubular primary permanent-magnet linear generator for wave energy conversions’, IEEE Trans. Magn., 2013, 49, (5), pp. 19171920.
    72. 72)
      • 66. Cao, G., Zou, Y., Pan, J.: ‘Investigation of a low-power, double-sided switched reluctance generator for wave energy conversion’, IET Renew. Power Gener., 2013, 7, (2), pp. 98109.
    73. 73)
      • 9. Vermaak, R., Kamper, M.J.: ‘Experimental evaluation and predictive control of an air-cored linear generator for direct-drive wave energy converters’, IEEE Trans. Ind. Appl., 2012, 48, (6), pp. 18171826.
    74. 74)
      • 73. Huang, L., Liu, J., Yu, H., et al: ‘Winding configuration and performance investigations of a tubular superconducting flux-switching linear generator’, IEEE Trans. Appl. Supercond., 2015, 25, (3), pp. 15.
    75. 75)
      • 55. Feng, N., Yu, H., Huang, L., et al: ‘Performance analysis of a magnetic-geared linear permanent magnet generator for wave energy conversion’. 2015 IEEE Magnetics Conf. (INTERMAG), 2015, pp. 11.
    76. 76)
      • 22. Kimoulakis, N.M., Kladas, A.G., Tegopoulos, J.A.: ‘Power generation optimization from sea waves by using a permanent magnet linear generator drive’, IEEE Trans. Magn., 2008, 44, (6), pp. 15301533.
    77. 77)
      • 29. Prudell, J., Stoddard, M., Amon, E., et al: ‘A permanent-magnet tubular linear generator for ocean wave energy conversion’, IEEE Trans. Ind. Appl., 2010, 46, (6), pp. 23922400.
    78. 78)
      • 42. Wang, J., Howe, D.: ‘Tubular modular permanent-magnet machines equipped with quasi-Halbach magnetized magnets-part I: magnetic field distribution, EMF, and thrust force’, IEEE Trans. Magn., 2005, 41, (9), pp. 24702478.
    79. 79)
      • 3. Falnes, J.: ‘A review of wave-energy extraction’, Mar. Struct., 2007, 20, (4), pp. 185201.
    80. 80)
      • 51. Hodgins, N., McDonald, A., Shek, J., et al: ‘Current and Future Developments of the C-GEN Lightweight Direct Drive Generator for Wave & Tidal Energy1 Hodgins, N., McDonald, A., Shek, J., Keysan, O., Mueller, M.: ‘Current and Future Developments of the C-GEN Lightweight Direct Drive Generator for Wav’. Proc. of the 8th European Wave and Tidal Energy Conf., Uppsala, Sweden, 2009, pp. 352359.
    81. 81)
      • 70. Mendes, R.P.G., Calado, M.R.A., Mariano, S.J.P.S.: ‘Particle swarm and Box's complex optimization methods to design linear tubular switched reluctance generators for wave energy conversion’, Swarm Evol. Comput., 2016, 28, pp. 2941.
    82. 82)
      • 71. Li, W., Chau, K.T., Li, J.: ‘Simulation of a tubular linear magnetic gear using HTS bulks for field modulation’, IEEE Trans. Appl. Supercond., 2011, 21, (3), pp. 11671170.
    83. 83)
      • 16. Waters, R., Stålberg, M., Danielsson, O., et al: ‘Experimental results from sea trials of an offshore wave energy system’, Appl. Phys. Lett., 2007, 90, (3), pp. 20122015.
    84. 84)
      • 20. Mueller, M.A., Baker, N.J., Ran, L., et al: ‘Experimental tests of an air-cored PM tubular generator for direct drive wave energy converters’. 4th IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2008), 2008, pp. 747751.
    85. 85)
      • 1. Leijon, M., Waters, R., Rahm, M., et al: ‘Catch the wave to electricity’, IEEE Power Energy Mag.., 2009, 7, (1), pp. 5054.
    86. 86)
      • 85. Li, X., Chau, K.-T., Cheng, M., et alat‘Comparison of magnetic-geared permanent-magnet machines’, Prog. Electromagn. Res., 2013, 133, (October 2012), pp. 177198.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0726
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0726
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading