access icon openaccess Understanding the energy yield of photovoltaic modules in different climates by linear performance loss analysis of the module performance ratio

The energy yield of 15 different photovoltaic module technologies is measured during one year of operation at four locations (Germany, Italy, India, Arizona) corresponding to four different climate zones. The data are analysed in terms of a linear performance loss analysis for the module performance ratio (MPR) taking into account the influence of module temperature, low irradiance conditions, spectral and angular effects and soiling. This analysis is based on an independent characterisation of the modules in the laboratory combined with site specific data accumulated during operation. The model predicts trends of the measured MPR due to different module technologies and different locations.

Inspec keywords: solar cells

Other keywords: angular effects; soiling; climate zones; module performance ratio; module temperature; data analysis; photovoltaic module technology; linear performance loss analysis; energy yield; photovoltaic modules; MPR; low irradiance conditions; spectral effect

Subjects: Solar cells and arrays; Photoelectric conversion; solar cells and arrays

References

    1. 1)
      • 5. Makrides, G., Zinsser, B., Norton, M., et al: ‘Potential of photovoltaic systems in countries with high solar irradiation’, Renew. Sustain. Energy Rev., 2010, 14, pp. 754762.
    2. 2)
      • 14. Schweiger, M., Herz, M., Kämmer, S., et al: ‘Fabrication tolerance of PV module I-V correction parameters for different PV module technologies and impact on energy yield prediction’. 29th European Photovoltaic Solar Energy Conf. and Exhibition, Amsterdam, 2014, pp. 32273230.
    3. 3)
      • 20. Herrmann, W., Schweiger, M.: ‘Soiling and self-cleaning of PV modules under the weather conditions of two locations in Arizona and South-East India’. 42nd Photovoltaic Specialist Conf. (IEEE PVSC), New Orleans, United States, 2015, pp. 15.
    4. 4)
      • 8. IEC 60904-9: ‘Photovoltaic devices – Part 9: Solar simulator performance requirements’. 2008.
    5. 5)
      • 19. Noorian, A., Moradi, I., Kamali, G. : ‘Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces’, Renew. Energy, 2008, 33, pp. 14061412.
    6. 6)
      • 9. IEC 60891: ‘Photovoltaic devices. Procedures for temperature and irradiance corrections to measured current voltage characteristics’. 2013.
    7. 7)
      • 4. IEC 60904-3: ‘Photovoltaic devices – Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data’, 2015.
    8. 8)
      • 16. IEC 60904-8: ‘Photovoltaic devices – Part 8: Measurement of spectral responsivity of a photovoltaic (PV) device’. 2015.
    9. 9)
      • 7. Cañete, C., Carretero, J., Sidrach-de-Cardona, M.: ‘Energy performance of different photovoltaic module technologies under outdoor conditions’, Energy, 2014, 65, pp. 295302.
    10. 10)
      • 6. Zinßer, B.: ‘Jahresenergieerträge unterschiedlicher Photovoltaik-Technologien bei verschiedenen klimatischen Bedingungen’. PhD thesis, Institut für Physikalische Elektronik der Universität Stuttgart, 2010.
    11. 11)
      • 2. IEC 61215: ‘Crystalline silicon terrestrial PV modules – design qualification and type approval’, 2006.
    12. 12)
      • 12. Schweiger, M., Bonilla, J., Herrmann, W., et al: ‘Performance Stability of Photovoltaic Modules in Different Climates’, Manuscript in preparation, early access.
    13. 13)
      • 15. IEC 60904-7: ‘Photovoltaic devices – Part 7: Computation of the spectral mismatch correction for measurements of photovoltaic devices’. 2009.
    14. 14)
      • 18. Betts, T.: ‘Investigation of photovoltaic device operation under varying spectral conditions’ (Loughborough University, 2004).
    15. 15)
      • 17. Ulbrich, C., Zahren, C., Gerber, A., et al: ‘Matching of silicon thin-film tandem solar cells for maximum power output’, Int. J. Photoenergy, 2013, 2013, p. 7, Article ID 314097.
    16. 16)
      • 10. Herrmann, W., Schweiger, M., Rimmelspacher, L.: ‘Solar simulator measurement procedures for determination of the angular characteristic of PV modules’. 29th European Photovoltaic Solar Energy Conf. and Exhibition, Amsterdam, Netherlands, 2014, pp. 24032406.
    17. 17)
      • 3. IEC 61646: ‘Thin-film terrestrial photovoltaic (PV) modules – design qualification and type approval’, 2013.
    18. 18)
      • 11. Tsuno, Y., Hishikawa, Y., Kurokawa, K.: ‘A method for spectral response measurements of various PV modules’. 23rd European Photovoltaic Solar Energy Conf., Valencia, 2008, pp. 27232727.
    19. 19)
      • 13. Huld, T., Gottschalg, R., Beyer, H., et al: ‘Mapping the performance of PV modules, effects of module type and data averaging’, Sol. Energy, 2010, 84, pp. 324338.
    20. 20)
      • 1. Bloomberg: ‘Global trends in renewable energy investment’. Datapacks 2011–2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0682
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0682
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading