Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimal torque control based on effective tracking range for maximum power point tracking of wind turbines under varying wind conditions

This study focuses on the development of optimal torque (OT) control, which is a commonly used method for maximum power point tracking (MPPT). Due to the sluggish response of wind turbines with high inertia, conventional OT control was improved to increase MPPT efficiency by dynamically modifying the generator torque versus rotor speed curve. An idea that tracking a local interval of wind speed where the wind energy is primarily distributed rather than the total range of wind speed variation is applied in this study. On this basis, an effective tracking range (ETR) that corresponds to the local interval of wind speed with concentrated wind energy distribution is proposed and an improved OT control based on ETR is developed. In this method, based on a direct relationship between ETR and wind conditions, the torque curve can be quickly optimised so that higher and more stable MPPT efficiency can be achieved under varying wind conditions. Meanwhile, MPPT efficiency enhancement by reducing tracking range without increasing torque discrepancy leads to a low cost of generator torque fluctuation and drive train load. Finally, simulations based on fatigue, aerodynamics, structures, and turbulence (FAST) code and experiments conducted on a wind turbine simulator are presented to verify the proposed method.

References

    1. 1)
      • 19. Chen, J., Chen, J.W., Gong, C.Y.: ‘Constant-bandwidth maximum power point tracking strategy for variable-speed wind turbines and its design details’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 50505058.
    2. 2)
      • 2. Amin, M.M., Mohammed, O.A.: ‘Development of high-performance grid-connected wind energy conversion system for optimum utilization of variable speed wind turbines’, IEEE Trans. Sustain. Energy, 2011, 2, (3), pp. 235245.
    3. 3)
      • 14. Tang, C., Soong, W.L., Freere, P., et al: ‘Dynamic wind turbine output power reduction under varying wind speed conditions due to inertia’, Wind Energy, 2013, 16, (4), pp. 561573.
    4. 4)
      • 8. Fingersh, L.J., Carlin, P.W.: ‘Results from the NREL variable-speed test bed’. Proc. Conf. Rec. AIAA Wind Energy Symp., Reno, Nevada, 1998, pp. 233237.
    5. 5)
      • 24. Park, J.Y., Lee, J.K., Oh, K.Y., et al: ‘Design of simulator for 3 MW wind turbine and its condition monitoring system’. Proc. IMECS, 2010.
    6. 6)
      • 18. Burton, T., Sharpe, D., Jenkins, N., et al: ‘Wind energy handbook’ (Wiley Press, New York, 2001).
    7. 7)
      • 22. Jonkman, J.M., Buhl, M.L.Jr.: ‘Fast user's guide’ (National Renewable Energy Laboratory, 2005).
    8. 8)
      • 5. Zhao, H.R., Wu, Q.W., Rasmussen, C., et al: ‘L1 adaptive speed control of a small wind energy conversion system for maximum power point tracking’, IEEE Trans. Energy Convers., 2014, 29, (3), pp. 576584.
    9. 9)
      • 31. Jamil, M., Parsa, S., Majidi, M.: ‘Wind power statistics and an evaluation of wind energy density’, Renew. Energy, 1995, 6, (5), pp. 623628.
    10. 10)
      • 11. Johnson, K.E., Pao, L.Y., Balas, M.J., et al: ‘Control of variable-speed wind turbines standard and adaptive techniques for maximizing energy capture’, IEEE Control Syst. Mag., 2006, 26, (3), pp. 7081.
    11. 11)
      • 25. Li, W., Yin, M., Chen, Z., et al: ‘An improved inertia compensation scheme for wind turbine simulator based on deviation mitigation’, Modern Power Syst. Clean Energy, 2016, published online, doi:10.1007/s40565-016-0202-y..
    12. 12)
      • 27. Bianchi, F.D., Battista, H., Mantz, R.J.: ‘Wind turbine control systems principles, modelling and gain scheduling design’ (Springer-Verlag, 2007).
    13. 13)
      • 12. Johnson, K.E.: ‘Adaptive torque control of variable speed wind turbines’ (National Renewable Energy Laboratory, 2004).
    14. 14)
      • 23. Munteanu, I., Bratcu, A.I., Bacha, S., et al: ‘Hardware-in-the-loop-based simulator for a class of variable-speed wind energy conversion systems: Design and Performance Assessment’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 564576.
    15. 15)
      • 6. Xia, Y.Y., Ahmed, K.H., Williams, B.W.: ‘Wind turbine power coefficient analysis of a new maximum power point tracking technique’, IEEE Trans. Ind. Electron., 2013, 60, (3), pp. 11221132.
    16. 16)
      • 13. Pan, C.T., Juan, Y.L.: ‘A novel sensorless MPPT controller for a high-efficiency micro scale wind power generation system’, IEEE Trans. Energy Convers., 2010, 25, (1), pp. 207216.
    17. 17)
      • 16. Barakati, S.M., Kazerani, M., Aplevich, J.D.: ‘Maximum power tracking control for a wind turbine system including a matrix converter’, IEEE Trans. Energy Convers., 2009, 24, (3), pp. 705713.
    18. 18)
      • 9. Johnson, K.E., Fingersh, L.J., Balas, M.J., et al: ‘Methods for increasing region 2 power capture on a variable-speed wind turbine’, J. Solar Energy Eng., 2004, 126, (4), pp. 10921100.
    19. 19)
      • 7. Camblong, H., Alegria, I.M.de, Rodriguez, M., et al: ‘Experimental evaluation of wind turbines maximum power point tracking controllers’, Energy Convers. Manage., 2006, 47, (18), pp. 28462858.
    20. 20)
      • 10. Hand, M.M., Johnson, K.E., Fingersh, L.J., et al: ‘Advanced control design and field testing for wind turbines at the national renewable energy laboratory’ (National Renewable Energy Laboratory, 2004).
    21. 21)
      • 21. Ye, X., Yin, M.H., Zhang, X.L., et al: ‘Convergence problem of adaptive torque control used in wind power generation system’. Energies, 2016, 9, (11), pp. 116.
    22. 22)
      • 15. Nishida, K., Ahmed, T., Nakaoka, M.: ‘A cost-effective high-efficiency power conditioner with simple MPPT control algorithm for wind-power grid integration’, IEEE Trans. Ind. Appl., 2011, 47, (2), pp. 893900.
    23. 23)
      • 26. Boukhezzar, B., Siguerdidjane, H.: ‘Nonlinear control of a variable-speed wind turbine using a two-mass model’, IEEE Trans. Energy Convers., 2011, 26, (1), pp. 149162.
    24. 24)
      • 1. Zertek, A., Verbic, G., Pantos, M.: ‘A novel strategy for variable-speed wind turbines’ participation in primary frequency control’, IEEE Trans. Sustain. Energy, 2012, 3, (4), pp. 791799.
    25. 25)
      • 28. Darrow, P.J.: ‘Wind turbine control design to reduce capital costs’ (National Renewable Energy Laboratory, 2010).
    26. 26)
      • 29. Morrissey, M.L., Cook, W.E., Greene, J.S.: ‘An improved method for estimating the wind power density distribution function’, J. Atmos. Ocean. Tech., 2010, 27, (7), pp. 11531164.
    27. 27)
      • 32. Bowman, A.W., Adelchi, A.: ‘Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations: the kernel approach with S-Plus illustrations’ (Oxford University Press, 1997, 1st edn.).
    28. 28)
      • 3. Dang, D.Q., Wang, Y., Cai, W.: ‘Offset-free predictive control for variable speed wind turbines’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 210.
    29. 29)
      • 17. Dalala, Z.M., Zahid, Z.U., Yu, W.S., et al: ‘Design and analysis of an MPPT technique for small-scale wind energy conversion systems’, IEEE Trans. Energy Convers., 2013, 28, (3), pp. 756767.
    30. 30)
      • 20. Zhang, X.L., Yin, M.H., Zhou, L.J., et al: ‘Research on the compensation coefficients of the improved MPPT control based on reduction of tracking range’. Proc. the 2nd Int. Conf. Energy and Environmental Protection, Guilin, China, 2013, pp. 598604.
    31. 31)
      • 30. Carta, J.A., Mentado, D.: ‘A continuous bivariate model for wind power density and wind turbine energy output estimations’, Energy Convers. Manage., 2007, 48, (2), pp. 420432.
    32. 32)
      • 33. Soltani, M., Knudsen, T., Svenstrup, M., et al: ‘Estimation of rotor effective wind speed: a comparison’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 11551167.
    33. 33)
      • 34. IEC Standard 61400-1: ‘Wind Turbines-Part 1: Design Requirements’, 2005.
    34. 34)
      • 4. Abdullah, M.A., Yatim, A.H.M., Tan, C.W., et al: ‘A review of maximum power point tracking algorithms for wind energy systems’, Renew. Sustainable Energy Rev., 2012, 16, (5), pp. 32203227.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0635
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0635
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address