access icon free Two-switch flyback inverter employing a current sensorless MPPT and scalar control for low cost solar powered pumps

Flyback inverter is known as a low cost solution for photovoltaic (PV) ac module application. This study presents a two-switch flyback inverter followed by a low frequency unfolding bridge for fractional horse power water pumping systems. This topology mitigates the problem of high-voltage transients at switch turn off which commonly exists in single switch flyback inverters. Moreover, the proposed control strategy achieves an integration of a novel sensorless maximum power point tracking (MPPT) algorithm as well as a constant v/f control for the efficient utilisation of both the PV panel and the motor. The proposed control algorithm minimises the cost and simplifies the control strategy. The validity and capability of the proposed method are verified by both simulation and practical results of a DSP-based two-switch flyback solar micro inverter for a fractional horsepower water pumping system.

Inspec keywords: solar cell arrays; digital signal processing chips; bridge circuits; invertors; pumps; maximum power point trackers; sensorless machine control

Other keywords: scalar control; PV panel; sensorless maximum power point tracking algorithm; high-voltage transient problem; DSP-based two-switch flyback solar micro inverter; current sensorless MPPT; control strategy; PV ac module application; low frequency unfolding bridge; fractional horsepower water pumping system; constant v/f control; motor utilisation; low cost solar powered pumps; photovoltaic ac module application

Subjects: DC-AC power convertors (invertors); Control of electric power systems; Power applications in water treatment and supply; Solar cells and arrays; DC-DC power convertors

References

    1. 1)
      • 15. Fathabadi, H.: ‘Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking’, Elsevier Energy, 2016, 94, pp. 466475.
    2. 2)
      • 14. Leppaaho, J., Suntio, T.: ‘Dynamic properties of PCM-controlled current-fed boost converter in photovoltaic system interfacing’. Proc. 14th European Conf. Power Electronics Applications (EPE), 2011, pp. 110.
    3. 3)
      • 28. Shimzu, T., Wada, K., Nakamura, N.: ‘Flyback type single-phase utility interactive inverter with power pulsation decoupling on the DC input for an AC photovoltaic module system’, IEEE Trans. Power Electron., 2006, 21, (5), pp. 12641272.
    4. 4)
      • 17. Karbakhsh, F., Abootorabi Zarchi, H.: ‘A fast and robust maximum power point tracker for photovoltaic systems using variable structure control approach’. 23rd Iranian Conf. Electrical Engineering (ICEE), 2015, pp. 16471652.
    5. 5)
      • 9. Gao, L., Dougal, R.A., Liu, S., et al: ‘Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 15481556.
    6. 6)
      • 25. Patel, H., Agarwal, V.: ‘MPPT scheme for a PV-fed single-phase single-stage grid-connected inverter operating in CCM with only one current sensor’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 256263.
    7. 7)
      • 4. Henrique dos Santos, T., Goedtel, A., Oliveira da Silva, S.A., et al: ‘Scalar control of an induction motor using a neural sensorless technique’, Elsevier Electr. Power Syst. Res., 2014, 108, pp. 322330.
    8. 8)
      • 12. Scarpa, V.V.R., Spiazzi, G., Buso, S.: ‘Low complexity MPPT technique expliting the effect of the PV cell series resistance’. Applied Power Electron. Conf. and Exposition (APEC), May 2008, pp. 19581964.
    9. 9)
      • 20. Yang, B., Li, W., Zhao, Y., et al: ‘Design and analysis of a gridconnected photovoltaic power system’, IEEE Trans. Power Electron., 2010, 25, (4), pp. 9921000.
    10. 10)
      • 3. Pimkumwong, N., Onkrong, A., Sapaklom, T.: ‘Modeling and simulation of direct torque control induction motor drives via constant volt/hertz technique’. Elsevier Int. Conf. Advances in Computational Modeling and Simulation, 2012, vol. 31, pp. 12111216.
    11. 11)
      • 38. Yu, Z., Figoli, D.: ‘AC induction motor control using constant V/Hz principle and space vector PWM technique with TMS320C240’. TI Application Report, 1998.
    12. 12)
      • 10. Piegari, L., Rizzo, R.: ‘Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking’, IET Renew. Power Gener., 2010, 4, (4), pp. 317328.
    13. 13)
      • 27. Martins, D.C., Demonti, R.: ‘Grid connected PV system using two energy processing stages’. 29th IEEE Photovoltaic Specialists Conf., 2002, pp. 16491652.
    14. 14)
      • 6. Rezk, H., Eltamaly, A.M.: ‘A comprehensive comparison of different MPPT techniques for photovoltaic systems’, Elsevier Solar Energy, 2015, 112, pp. 111.
    15. 15)
      • 30. Nanakos, A.C., Tatakis, E.C., Papanikolaou, N.P.: ‘A weighted-efficiency-oriented design methodology of flyback inverter for AC photovoltaic modules’, IEEE Trans. Power Electron., 2012, 27, (7), pp. 32213233.
    16. 16)
      • 35. Gao, M., Chen, M., Zhang, C., et al: ‘Analysis and implementation of an improved flyback-inverter for photovoltaic AC module applications’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 34283444.
    17. 17)
      • 23. Park, S., Jinda, A.K., Gole, A.M., et al: ‘An optimized sensorless MPPT method for PV generation system’. Canadian Conf. Electrical and Computer Engineering (CCECE), 2009, pp. 720724.
    18. 18)
      • 1. Vitorino, M.A., de Rossiter Correa, M.B., Jacobina, C.B.: ‘An effective induction motor control for photovoltaic pumping’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 11621170.
    19. 19)
      • 24. Jain, S., Agarwal, V.: ‘Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems’, IET Electr. Power Appl., 2007, 1, (5), pp. 753762.
    20. 20)
      • 16. Sera, D., Teodorsecu, R., Hantschel, G., et al: ‘Optimized maximum power point tracker for fast-changing environmental conditions’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 26292637.
    21. 21)
      • 36. Ali, A.N.A., Saied, M.H., Mostafa, M.Z., et al: ‘A survey of maximum PPT techniques of PV systems’. IEEE Energytech Conf., 2012, pp. 117.
    22. 22)
      • 37. Shmilovitz, D.: ‘On the control of photovoltaic maximum power point tracker via output parameters’, Proc. IEE Electric Power Appl., 2005, 152, (2), pp. 239248.
    23. 23)
      • 18. Meza, C., Biel, D., Negroni, J., et al: ‘Boost-buck inverter variable structure control for grid-connected photovoltaic systems with sensorless MPPT’. Proc. IEEE Int. Symp. on Industrial Electronics, 2005, vol. 2, pp. 657662.
    24. 24)
      • 29. Kyritsis, A.Ch., Tatakis, E.C., Papanikolaou, N.P.: ‘Optimum design of the current-source flyback inverter for decentralized grid- connected photovoltaic systems’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 281293.
    25. 25)
      • 33. Kjaer, S.B., Blaabjerg, F.: ‘Design optimization of a single phase inverter for photovoltaic applications’. IEEE 34th Annual Power Electronics Specialist Conf., 2003, vol. 3, pp. 11831190.
    26. 26)
      • 22. Kitano, T., Matsui, M., Xu, D.-H.: ‘Power sensor-less MPPT control scheme utilizing power balance at DC linksystem design to ensure stability and response’. IEEE Conf. Industrial Electronics Society, 2001, vol. 2, pp. 13091314.
    27. 27)
      • 13. Sokolov, M., Shmilovitz, D.: ‘A modified MPPT scheme for accelerated convergence’, IEEE Trans. Energy Convers., 2009, 23, (4), pp. 11051107.
    28. 28)
      • 5. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 439449.
    29. 29)
      • 2. Alghuwainem, S.M.: ‘Steady-state performance of DC motors supplied from photovoltaic generators with step-up converter’, IEEE Trans. Energy Convers., 1992, 7, (2), pp. 267272.
    30. 30)
      • 7. Jain, S., Agarwal, V.: ‘A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems’, IEEE Power Electron. Lett., 2004, 2, (1), pp. 1619.
    31. 31)
      • 26. Kutkut, N., Hu, H.: ‘Photovoltaic micro-inverter: topologies, control aspects, reliability issues, and applicable standards’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2010, Tutorial.
    32. 32)
      • 21. Kim, Y., Kang, J., Youn, S., et al: ‘Sensorless current balancing and MPPT control for photovoltaic AC module type interleaved flyback inverter’. 7th Int. Power Electronics and Motion Control Conf. (IPEMC), 2012, pp. 13631367.
    33. 33)
      • 8. Tey, K.S., Mekhilef, S.: ‘Modified incremental conductane MPPT algorithm to mitigate inaccurate response under fast-charging solar irradiation level’, Elsevier Solar Energy, 2014, 101, (1), pp. 333342.
    34. 34)
      • 11. Zakzouk, N.E., Elsaharty, M.A., Abdelsalam, A.K., et al: ‘Improved performancce low-cost incremental conductance PV MPPT technique’, IET Renew. Power Gener., 2016, 10, (4), pp. 561574.
    35. 35)
      • 31. Li, Y., Oruganti, R.: ‘A low cost flyback CCM inverter for AC module application’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 12951303.
    36. 36)
      • 32. Zhang, Z., He, X., Liu, Y.: ‘An optimal control method for photovoltaic grid-tied interleaved flyback micro-inverters to achieve high efficiency in wide load range’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 50745087.
    37. 37)
      • 19. Rahim, N.A., Selvaraj, J., Krismadinata, C.: ‘Hysteresis current control and sensorless MPPT for grid-connected photovoltaic systems’. IEEE Int. Symp. on Industrial Electronics, 2007, pp. 572577.
    38. 38)
      • 34. Kazimierczuk, K.M.: ‘Pulse-width modulated DC–DC power converters’ (John Wiely and Sons, 2008), pp. 189236.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0631
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0631
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading