Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Model development and small-signal stability analysis of DFIG with stator winding inter-turn fault

Model development and small-signal stability analysis of DFIG with stator winding inter-turn fault

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Much attention has been continuously paid on the model development and stability analysis of the doubly fed induction generator (DFIG) widely applied in wind power generation. Similarly, this study develops the form-standardised state-space model in the dq reference frame of the DFIG with stator winding inter-turn fault (SWITF). Compared with those previously developed, it is definitely preferable for the simulation and stability analysis of the DFIG with SWITF due to its standard form. Moreover, for the DFIG with SWITF working in stator-voltage-oriented control frame, the small-signal stability analysis is conducted using MATLAB simulation, yielding the conclusion that SWITF will never eradicate the DFIG's small-signal stability but deteriorate it to some extent. This conclusion is further validated by means of the Lyapunov stability theory. As a kind of contribution of this study, the analytical expressions of the eigenvalues of the DFIG with SWITF are derived. Case study based on an MATLAB/Simulink demo routine is completed to demonstrate the validity of the model development and small-signal stability analysis of the DFIG with SWITF.

References

    1. 1)
      • 10. Tavner, P.J., Xiang, J., Spinato, F.: ‘Reliability analysis for WTs’, Wind Energy, 2007, 10, pp. 118.
    2. 2)
      • 15. Yazidi, A., Henao, H., Capolino, G.A., et al: ‘Simulation of a doubly-fed induction machine for wind turbine generator fault analysis’. Proc. Fifth IEEE Int. Symp. on Diagnostics for Electric Machines, Power Electronics and Drives, Vienna, Austria, September 2005, pp. 16.
    3. 3)
      • 4. Luna, A., Lima, F.K.A., Santos, D., et al: ‘Simplified modeling of a DFIG for transient studies in wind power applications’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 920.
    4. 4)
      • 1. Li, H., Chen, Z.: ‘Overview of different wind generator systems and their comparisons’, IET Renew. Power Gener., 2008, 2, (2), pp. 123138.
    5. 5)
      • 7. Yang, S., Wu, Y., Lin, H., et al: ‘Integrated mechanical and electrical DFIG wind turbine model development’, IEEE Trans. Ind. Appl., 2014, 50, (3), pp. 20902102.
    6. 6)
      • 8. Yang, L., Xu, Z., Østergaard, J., et al: ‘Oscillatory stability and eigenvalue sensitivity analysis of a DFIG wind turbine system’, IEEE Trans. Energy Convers., 2011, 26, (1), pp. 328339.
    7. 7)
      • 29. Luo, X., Liao, Y., Toliyat, H.A., et al: ‘Multiple coupled circuit modeling of induction machines’, IEEE Trans. Ind. Appl., 1995, 31, pp. 311317.
    8. 8)
      • 21. Sottile, J., Kohler, J.L.: ‘An on-line method to detect incipient failure of turn insulation in random-wound motors’, IEEE Trans. Energy Convers., 1993, 8, (4), pp. 762768.
    9. 9)
      • 12. Spinato, F., Tavner, P.J., van Bussel, G.J.W., et al: ‘Reliability of wind turbine subassemblies’, IET Renew. Power Gener., 2008, 3, (4), pp. 387401.
    10. 10)
      • 19. Yousefi kia, M., Khedri, M., Najafi, H.R., et al: ‘Hybrid modeling of doubly fed induction generators with inter-turn stator fault and its detection method using wavelet analysis’, IET Gener. Transm. Distrib., 2013, 7, (9), pp. 982990.
    11. 11)
      • 31. Pena, R., Clare, J.C., Asher, G.M.: ‘Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation’, IEE Proc. Electr. Power Appl., 1996, 143, (3), pp. 231241.
    12. 12)
      • 18. Shah, D., Nandi, S., Neti, P.: ‘Stator-interturn-fault detection of doubly-fed induction generators using rotor-current and search-coil-voltage signature analysis’, IEEE Trans. Ind. Appl., 2009, 45, (5), pp. 18311842.
    13. 13)
      • 13. Watson, S.J., Xiang, B.J., Yang, W., et al: ‘Condition monitoring of the power output of wind turbine generators using wavelets’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 715721.
    14. 14)
      • 16. Yazidi, A., Henao, H., Capolino, G.A., et al: ‘Double-fed three-phase induction machine model for simulation of inter-turn short circuit fault’. Proc. IEEE Int. Electric Machines and Drives Conf., Miami, USA, May 2009, pp. 571576.
    15. 15)
      • 27. Nussbaumer, P., Zoeller, C., Wolbank, T.M., et al: ‘Transient distribution of voltages in induction machine stator windings resulting from switching of power electronics’. Proc. 39th IEEE Industrial Electronics Society Annual Conf., Vienna, Austria, November 2013, pp. 31893194.
    16. 16)
      • 5. Li, S., Challoo, R., Nemmers, M.J.: ‘Comparative study of DFIG power control using stator-voltage and stator-flux oriented frames’. Proc. IEEE Power & Energy Society General Meeting, Calgary, Alberta, Canada, July 2009, pp. 18.
    17. 17)
      • 3. Ekanayake, J.B., Holdsworth, L., Wu, X.G., et al: ‘Dynamic modeling of doubly fed induction generator wind turbines’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 803809.
    18. 18)
      • 6. Lei, T., Barnes, M., Ozakturk, M.: ‘Doubly-fed induction generator wind turbine modeling for detailed electromagnetic system studies’, IET Renew. Power Gener., 2013, 7, (2), pp. 180189.
    19. 19)
      • 33. Zhang, B., Zhang, B., Wu, W.: ‘Time constant model analysis of double fed induction wind generator’. Proc. Int. Conf. on Electrical Engineering, Shenyang, China, July 2009.
    20. 20)
      • 2. Tapia, A., Tapia, G., Ostolaza, J.X., et al: ‘Modeling and control of a wind turbine driven doubly fed induction generator’, IEEE Trans. Energy Convers., 2003, 18, (2), pp. 194204.
    21. 21)
      • 23. Patel, D.C., Chandorkar, M.C.: ‘Small-signal transient analysis of induction machines with stator inter-turn faults using dynamic phasors’. Proc. Fourth IEEE Energy Conversion Congress and Exposition, Raleigh, USA, September 2012, pp. 30083015.
    22. 22)
      • 17. Popa, L.M., Jensen, B., Ritchie, E., et al: ‘Condition monitoring of wind generators’. Proc. 38th IEEE Industry Applications Society Annual Meeting, Salt Lake City, USA, October 2003, vol. 3, pp. 18391846.
    23. 23)
      • 22. Kliman, G.B., Premerlani, W.J., Koegl, R.A., et al: ‘Sensitive, on-line turn-to-turn fault detection in AC motors’, Electr. Mach. Power Syst., 2000, 28, (10), pp. 915927.
    24. 24)
      • 26. AI-Furaih, A.: ‘Evaluation and testing of turn insulation of large AC motors’, IEEE Trans. Ind. Appl., 1993, 31, (1), pp. 190192.
    25. 25)
      • 25. Bonnett, A.H., Soukup, G.C.: ‘Cause and analysis of stator and rotor failures in three-phase squirrel cage induction motors’, IEEE Trans. Ind. Appl., 1992, 28, (4), pp. 921937.
    26. 26)
      • 20. Roshanfekr, R., Jalilian, A.: ‘Wavelet-based index to discriminate between minor inter-turn short-circuit and resistive asymmetrical faults in stator windings of doubly fed induction generators: a simulation study’, IET Gener. Transm. Distrib., 2016, 10, (2), pp. 374381.
    27. 27)
      • 14. Zaggout, M., Tavner, P., Crabtree, C., et al: ‘Detection of rotor electrical asymmetry in wind turbine doubly-fed induction generators’, IET Renew. Power Gener., 2014, 8, (8), pp. 878886.
    28. 28)
      • 9. Bourdoulis, M.K., Alexandridis, A.T.: ‘Nonlinear stability analysis of DFIG wind generators in voltage oriented control operation’. Proc. European Control Conf., Zürich, Switzerland, July 2013, pp. 484489.
    29. 29)
      • 30. Reichmeider, P.P., Querrey, D., Gross, C.A., et al: ‘Partitioning of synchronous machine windings for internal fault analysis’, IEEE Trans. Energy Convers., 2000, 15, (4), pp. 372375.
    30. 30)
      • 32. Petersson, A., Harnefors, L., Thiringer, T.: ‘Comparison between stator-flux and grid-flux-oriented rotor current control of doubly-fed induction generators’. Proc. 35th IEEE Annual Power Electronics Specialists Conf., Aachen, Germany, June 2004, pp. 482486.
    31. 31)
      • 11. Ribrant, J., Bertling, L.M.: ‘Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 167173.
    32. 32)
      • 24. MathWorks: ‘MatlabR2012a product help’, 2012.
    33. 33)
      • 34. Wu, B., Lang, Y., Zargari, N., et al: ‘Power conversion and control of wind energy system’ (IEEE, John Wiley & Sons, Piscataway, 2011).
    34. 34)
      • 28. Tallam, R.M., Habetler, T.G., Harley, R.G.: ‘Transient model for induction machines with stator winding turn faults’, IEEE Trans. Ind. Appl., 2002, 38, (3), pp. 632637.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0593
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0593
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address