Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Effective power transfer scheme for a grid connected hybrid wind/photovoltaic system

A new topology and effective power transfer scheme with minimum number of converters is proposed for a grid connected wind/photovoltaic (PV) system. Distributed generation sources considered are permanent magnet synchronous generator (PMSG)-based wind energy conversion system and PV array system. Two voltage source converters with a common DC-link serve as wind side converter (WSC) and grid side converter (GSC), respectively. The PV array is directly tied to the DC link without any power converter providing variable DC-link voltage. The Perturb and Observe technique extracts the maximum power from PV and the DC-link voltage is set to the maximum power point (MPP) voltage of the PV array. The output DC voltage of WSC is regulated to an MPP PV voltage using an outer proportional–integral voltage control loop. The maximum power from the PMSG and stator voltages is utilised to generate the reference currents for WSC to make stator currents to follow stator voltages. With unity power factor control, the overall VA of the WSC would contribute to the active power transfer and thereby reduce the kVA rating of the WSC in the proposed configuration. GSC tracks the maximum power from wind and PV array, and serves as a shunt active power filter to compensate for the current unbalance due to the connection of non-linear loads at the grid. All these functions are accomplished simultaneously. Various power transfer modes of operation are simulated through MATLAB/Simulink software and its results are validated through dSPACE Digital Signal Processor.

References

    1. 1)
      • 23. Singh, B., Niwas, R., Dube, S.K.: ‘Load leveling and voltage control of permanent magnet synchronous generator-based DG set for standalone supply system’, IEEE Trans. Ind. Inf., 2014, 10, (4), pp. 20342043.
    2. 2)
      • 21. Santhi, R., et al: ‘Intelligent sensor fault-tolerant control for variable speed wind electrical systems’, IET Power Electron., 2013, 6, (7), pp. 13081319.
    3. 3)
      • 27. González-Longatt, F.M.: ‘Model of photovoltaic module in Matlab™’. Do Congreso Iberoamericano de Estudiantes de Ingeniería Eléctrica, Electrónica y Computación (II CIBELEC 2005).
    4. 4)
      • 8. Wang, L., Lin, T.J.: ‘Stability and performance of an autonomous hybrid wind-PV-battery system’. Int. Conf. Intelligent Systems Applications to Power System (ISAP), 2007, pp. 16.
    5. 5)
      • 19. Subashini, N., Dharmalingam, V., Uma, G.: ‘Design and implementation of a linear quadratic regulator controlled active power conditioner for effective source utilisation and voltage regulation in low-power wind energy conversion systems’, IET Power Electron., 2015, 8, (11), pp. 21452155.
    6. 6)
      • 20. Aguilar, O., Tapia, R., Valderrabano, A., et al: ‘Design and performance comparison of PI and adaptive current controllers for a WECS’, IEEE Latin Am. Trans., 2015, 13, (5), pp. 13611368.
    7. 7)
      • 10. Chen, H., Qiu, J., Liu, C.: ‘Dynamic modeling and simulation of renewable energy based hybrid power systems’. Int. Proc. DRPT, Nanjing, China, 2008.
    8. 8)
      • 13. Bae, S., Kwasinski, A.: ‘Dynamic modeling and operation strategy for a microgrid with wind and photovoltaic resources’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 18671876.
    9. 9)
      • 16. Rajan Singaravel, M.M., Arul Daniel, S.: ‘MPPT with single DC–DC converter and inverter for grid-connected hybrid wind-driven PMSG–PV array’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 48494857.
    10. 10)
      • 17. Yin, B., Oruganti, R., Panda, S.K., et al: ‘A simple single-input-single-output (SISO) model for a three phase PWM rectifier’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 620631.
    11. 11)
      • 22. Kumrawat, A.: ‘Design of control power supply for high power converters with wide input variation’. MEng (project report) Bangalore, India, Indian Institute of Science, June 2012.
    12. 12)
      • 4. Liu, G., Rasul, M.G., Amanullah, M.T.O., et al: ‘Feasibility study and energy conversion analysis of stand-alone hybrid renewable energy system’, Energy Convers. Manage., 2015, 105, pp. 471479.
    13. 13)
      • 6. Nehrir, M.H., Lameres, B.J., Venkataramanan, G., et al: ‘An approach to evaluate the general performance of stand-alone wind/photovoltaic generating systems’, IEEE Trans. Energy Convers., 2000, 15, (4), pp. 433439.
    14. 14)
      • 30. Geng, H., Wu, B., Yang, G.: ‘Active damping for PMSG-based WECS with DC link current estimation’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 11101119.
    15. 15)
      • 29. Subashini, N., Dharmalingam, V., Govindarajan, U., et al: ‘Power quality improvement in a low-voltage DC ceiling grid powered system’, IET Power Electron., 2015, 8, (10), pp. 19021911.
    16. 16)
      • 28. Shanthi, P., Uma, G., Deivasundari, P.: ‘Instantaneous power-based current control scheme for VAR compensation in hybrid AC/DC networks for smart grid applications’, IET Power Electron., 2014, 7, (5), pp. 12161226.
    17. 17)
      • 25. Tan, K., Islam, S.: ‘Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors’, IEEE Trans. Energy Convers., 2004, 19, (2), pp. 392399.
    18. 18)
      • 15. Daniel, S.A., Pandiraj, K., Jenkins, N.: ‘Control of an integrated wind turbine generator and photovoltaic system for battery charging’. Proc. British Wind Energy Conf., 1997, pp. 121128.
    19. 19)
      • 1. Saheb-Koussa, D., Haddadi, M., Belhamel, M.: ‘Economic and technical study of a hybrid system (wind–photovoltaic–diesel) for rural electrification in Algeria’, Appl. Energy, 2009, 86, pp. 10241030.
    20. 20)
      • 24. Uehar, A., Pratap, A., Goya, T.: ‘A coordinated control method to smooth wind power fluctuations of a PMSG-based WECS’, IEEE Trans. Energy Convers., 2011, 26, (2), pp. 51558.
    21. 21)
      • 14. Hu, K.-W., Liaw, C.-M.: ‘Incorporated operation control of DC microgrid and electric vehicle’, 2016, 63, (1), pp. 202215.
    22. 22)
      • 26. Li, S., Haskew, T.A., Swatloski, R.P., et al: ‘Optimal and direct-current vector control of direct-driven PMSG wind turbines’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 23252337.
    23. 23)
      • 11. Giraud, F., Salameh, Z.M.: ‘Steady-state performance of a grid connected roof-top hybrid wind-photovoltaic power system with battery storage’, IEEE Trans. Energy Convers., 2001, 16, (1), pp. 17.
    24. 24)
      • 18. Stankovic, A.V., Chen, K.: ‘A new control method for input–output harmonic elimination of the PWM boost-type rectifier under extreme unbalanced operating conditions’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 24202430.
    25. 25)
      • 12. Chiang, H.C., Ma, T.T., Cheng, Y.H., et al: ‘Design and implementation of a hybrid regenerative power system combining grid-tie and uninterruptible power supply functions’, IET Renew. Power Gener., 2010, 4, (1), pp. 8599.
    26. 26)
      • 5. Anayochukwu, A.V.: ‘Simulation of photovoltaic/diesel hybrid power generation system with energy storage and supervisory control’, Int. J. Renew. Energy Res., 2013, 3, (3), pp. 605614.
    27. 27)
      • 3. Hong, Y.-Y., Lian, R.-C.: ‘Optimal sizing of hybrid wind/PV/diesel generation in a stand-alone power system using Markov-based genetic algorithm’, IEEE Trans. Power Deliv., 2012, 27, (2), pp. 640647.
    28. 28)
      • 7. Tian, J., Liu, Z., Shu, J., et al: ‘Base on the ultra-short term power prediction and feed-forward control of energy management for microgrid system applied in industrial park’, IET Gener. Transm. Distrib., 2016, 10, (9), pp. 22592266.
    29. 29)
      • 9. Valenciaga, F., Puleston, P.F.: ‘Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy’, IEEE Trans. Energy Convers., 2005, 20, pp. 398405.
    30. 30)
      • 2. Philip, J., Jain, C., Kant, K., et al: ‘Control and implementation of a standalone solar photovoltaic hybrid system’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 34723479.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0592
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0592
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address