Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Comparative study on Lyapunov-function-based control schemes for single-phase grid-connected voltage-source inverter with LCL filter

This study deals with various Lyapunov-function-based control (LFBC) schemes proposed for a single-phase grid-connected voltage source inverter with LCL filter. Use of LCL filter causes resonance which may adversely affect the controller's stability. The conventional (CLFBC) scheme employing the inverter-side current guarantees the asymptotic global stability, but it is not able to damp the resonance. As a remedy to the poor resonance damping, the adoption of grid-current and capacitor-voltage feedback schemes have been investigated. Although the former offers a globally asymptotically stable system, it cannot improve the poor resonance damping. However, the CLFBC with capacitor-voltage feedback scheme not only preserves the global stability, but also improves the resonance damping substantially. The analytical equations of the closed-loop poles for each control scheme are provided which can be used to compute the pole positions and the damping ratio needed for a desired response. Furthermore, the effect of changing controller gains on the loci of closed-loop poles is also studied. Simulation and experimental results obtained from 3.3 kW system demonstrate that the CLFBC with capacitor-voltage feedback scheme not only offers a global stability, but also leads to good quality sinusoidal grid current with reasonable total harmonic distortion and fast dynamic response.

References

    1. 1)
      • 4. Wu, F., Sun, B., Zhao, K., et al: ‘Analysis and solution of current zero-crossing distortion with unipolar hysteresis current control in grid-connected inverter’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 44504457.
    2. 2)
      • 24. Wai, R., Lin, C., Huang, Y., et al: ‘Design of high-performance stand-alone and grid-connected inverter for distributed generation applications’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 15421555.
    3. 3)
      • 7. Ho, C.N.M., Cheung, V.S.P., Chung, H.S.H.: ‘Constant-frequency hysteresis current control of grid-connected VSI without bandwidth control’, IEEE Trans. Power Electron., 2009, 24, (11), pp. 24842495.
    4. 4)
      • 23. Xue, M., Zhang, Y., Kang, Y., et al: ‘Full feedforward of grid voltage for discrete state feedback controlled grid-connected inverter with LCL filter’, IEEE Trans. Power Electron., 2012, 27, (10), pp. 42344247.
    5. 5)
      • 34. Komurcugil, H., Altin, N., Ozdemir, S., et al: ‘An extended Lyapunov-function-based control strategy for single-phase UPS inverters’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 39763983.
    6. 6)
      • 29. Komurcugil Kukrer, H.O.: ‘Lyapunov-based control strategy for power-factor preregulators’, IEEE Trans. Circuits Syst. I, 2003, 50, (9), pp. 12261229.
    7. 7)
      • 18. Dannehl, J., Wessels, C., Fuchs, F.W.: ‘Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters’, IEEE Trans. Ind. Electron., 2009, 56, (2), pp. 380388.
    8. 8)
      • 17. Xu, J., Xie, S., Tang, T.: ‘Active damping-based control for grid-connected LCL-filtered inverter with injected grid current only’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 47464758.
    9. 9)
      • 2. Sefa, I., Altin, N.: ‘Grid interactive photovoltaic inverters – a review’, J. Fac. Eng. Arch. Gazi Univ., 2009, 24, (3), pp. 409424.
    10. 10)
      • 3. Krismadinata, C., Rahim, N.A., Selvaraj, J.: ‘Implementation of hysteresis current control for single-phase grid connected inverter’. Proc. Int. Conf. Power Electronics Drive Systems, 27–30 November 2007, pp. 10971101.
    11. 11)
      • 10. Shen, G., Zhu, X., Zhang, J., et al: ‘A new feedback method for PR current control of LCL-filter-based grid-connected inverter’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 20332041.
    12. 12)
      • 26. Eren, S., Pahlevaninezhad, M., Bakhshai, A., et al: ‘Composite nonlinear feedback control and stability analysis of a grid-connected voltage source inverter with LCL filter’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 50595074.
    13. 13)
      • 14. Wu, W., Yuanbin, Y., Tang, T., et al: ‘A new design method for the passive damped LCL and LLCL filter-based single-phase grid-tied inverter’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 43394350.
    14. 14)
      • 8. Teodorescu, R., Blaabjerg, F., Liserre, M., et al: ‘Proportional resonant controllers and filters for grid-connected voltage-source converters’, Proc. Inst. Electr. Eng. Electr. Power Appl., 2006, 153, (5), pp. 750762.
    15. 15)
      • 28. Komurcugil Kukrer, H.O.: ‘Lyapunov-based control for three-phase PWM AC/DC voltage-source converters’, IEEE Trans. Power Electron., 1998, 13, (5), pp. 801813.
    16. 16)
      • 36. Teodorescu, R., Blaabjerg, F., Liserre, M., et al: ‘A stable three-phase LCL-filter based active rectifier without damping’. Proc. 38th Conf. Record IEEE IAS Annual Meeting, Salt Lake City, UT, USA, 2003, vol. 3, pp. 15521557.
    17. 17)
      • 6. Hao, X., Yang, X., Liu, T., et al: ‘A sliding-mode controller with multiresonant sliding surface for single-phase grid-connected VSI with an LCL filter’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 22592268.
    18. 18)
      • 12. Altin, N., Sefa, I.: ‘dSPACE based adaptive neuro-fuzzy controller of grid interactive inverter’, Energy Convers. Manage., 2012, 56, pp. 130139.
    19. 19)
      • 22. Avelar, H.J., Parreira, W.A., Vieira, J.B., et al: ‘A state equation model of a single-phase grid-connected inverter using a droop control scheme with extra phase shift control action’, IEEE Trans. Ind. Electron., 2012, 59, (3), pp. 15271537.
    20. 20)
      • 11. Ahmed, T., Nishida, K., Nakaoka, M.: ‘Deadbeat current control of LCL-filter for grid connected three-phase voltage source inverter’. Proc. 2011 IEEE Ninth Int. Conf. Power Electronics and Drive Systems (PEDS), Singapore, 2011, pp. 459467.
    21. 21)
      • 19. Dannehl, J., Liserre, M., Fuchs, F.W.: ‘Filter-based active damping of voltage source converters with LCL filter’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 36233633.
    22. 22)
      • 5. Fuchs, F., Dannehl, J., Fuchs, F.W.: ‘Discrete sliding mode current control of grid-connected three-phase PWM converters with LCL filter’. Proc. IEEE Int. Symp. Industrial Electronics, July 2010, pp. 779785.
    23. 23)
      • 32. Meza, C., Biel, D., Jeltsema, D., et al: ‘Lyapunov-based control scheme for single-phase grid-connected PV central inverters’, IEEE Trans. Control Syst. Technol., 2012, 20, (2), pp. 520529.
    24. 24)
      • 21. Bojoi, R.I., Limongi, L.R., Roiu, D., et al: ‘Enhanced power quality control strategy for single-phase inverters in distributed generation systems’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 798807.
    25. 25)
      • 30. Komurcugil Kukrer, H.O.: ‘A new control strategy for single-phase shunt active power filters using a Lyapunov function’, IEEE Trans. Ind. Electron., 2006, 53, (1), pp. 305312.
    26. 26)
      • 37. Liu, F., Zhou, Y., Duan, S., et al: ‘Parameter design of a two-current-loop controller used in a grid-connected inverter system with LCL filter’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 44834491.
    27. 27)
      • 38. Press, W.H., Vetterling, W.T.: ‘Numerical recipes in Fortran 77: art of scientific computing’ (Cambridge University Press, 1992).
    28. 28)
      • 20. Wang, X., Ruan, X., Liu, S., et al: ‘Full feedforward of grid voltage for grid-connected inverter with LCL filter to suppress current distortion due to grid voltage harmonics’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 31193126.
    29. 29)
      • 16. Pan, D., Ruan, X., Bao, C., et al: ‘Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 34143427.
    30. 30)
      • 25. Yao, Z., Xiao, L.: ‘Control of single-phase grid-connected inverters with nonlinear loads’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 13841389.
    31. 31)
      • 35. Serpa, L.A., Ponnaluri, S., Barbosa, P.M., et al: ‘A modified direct power control strategy allowing the connection of three-phase inverters to the grid through LCL filters’, IEEE Trans. Ind. Appl., 2007, 43, (5), pp. 13881400.
    32. 32)
      • 33. Sahoo, S.K., Dasgupta, S., Panda, S.K., et al: ‘A Lyapunov function-based robust direct torque controller for a switched reluctance motor drive system’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 555564.
    33. 33)
      • 27. Sanders, S.R., Verghese, G.C.: ‘Lyapunov-based control for switched power converters’, IEEE Trans. Power Electron., 1992, 7, (1), pp. 1724.
    34. 34)
      • 15. Alzola, R.P., Liserre, M., Blaabjerg, F., et al: ‘Analysis of the passive damping losses in LCL-filter-based grid converters’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 26422646.
    35. 35)
      • 1. Blaabjerg, F., Teodorescu, R., Liserre, M., et al: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 13981409.
    36. 36)
      • 9. Castilla, M., Miret, J., Matas, J., et al: ‘Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 44924501.
    37. 37)
      • 13. Sefa, I., Altin, N., Ozdemir, S., et al: ‘Fuzzy PI controlled inverter for grid interactive renewable energy systems’, IET Renew. Power Gener., 2015, 9, (7), pp. 729738.
    38. 38)
      • 31. Rahmani, S., Hamadi, A., Al-Haddad, K.: ‘A Lyapunov-function-based control for a three-phase shunt hybrid active filter’, IEEE Trans. Ind. Electron., 2012, 59, (3), pp. 14181429.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0566
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0566
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address