Grid integration of 3P4W solar PV system using M-LWDF-based control technique

Grid integration of 3P4W solar PV system using M-LWDF-based control technique

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a multitasking three-phase four (3P4W) wire solar photovoltaic (SPV) system using a modified lattice wave digital filter (M-LWDF)-based control technique. For effective utilisation of SPV array, an incremental conductance-based maximum power point tracking approach is used to obtain the peak power. However, M-LWDF-based control technique is used to control the grid tied 4-leg voltage source converter. The proposed control technique with reduced computational burden is an analytical tool for extracting the harmonics free fundamental component of load current and the mitigation of load neutral current. The M-LWDF-based control technique is implemented under various working modes at non-linear loads.


    1. 1)
      • 1. Boxwell, M.: ‘Solar electricity handbook’ (Green Stream Publisher, UK, 2015).
    2. 2)
      • 2. Kalogirou, O.A.: ‘Solar energy engineering: processes and systems’ (Academic Press Inc. Limassol, Cyprus, 2009).
    3. 3)
      • 3. Bowtell, L., Ahfock, A.: ‘Direct current offset controller for transformer less single-phase photovoltaic grid-connected inverters’, IET Renew. Power Gener., 2010, 4, (5), pp. 428437.
    4. 4)
      • 4. Philip, J., Jain, C., Kant, K., et al: ‘Control and implementation of a standalone solar photo-voltaic hybrid system’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 34723479.
    5. 5)
      • 5. Singh, B., Dwivedi, S., Hussain, I., et al: ‘Grid integration of solar PV power generating system using QPLL based control algorithm’. Sixth IEEE Power India Int. Conf. (PIICON), Delhi, 2014, pp. 16.
    6. 6)
      • 6. Paz, F., Ordonez, M.: ‘High performance solar MPPT using switching ripple identification based on a lock-in amplifier’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 35953604.
    7. 7)
      • 7. Moon, S., Kim, S.J., Seo, J.W., et al: ‘Maximum power point tracking without current sensor for photovoltaic module integrated converter using ZigBee wireless network’, Int. J. Electr. Power Energy Syst., 2014, 56, pp. 286297.
    8. 8)
      • 8. Elgendy, M., Atkinson, D., Zahawi, B.: ‘Experimental investigation of the incremental conductance maximum power point tracking algorithm at high perturbation rates’, IET Renew. Power Gener., 2016, 10, (2), pp. 133139.
    9. 9)
      • 9. Kish, G.J., Lee, J.J., Lehn, P.W.: ‘Modelling and control of photovoltaic panels utilising the incremental conductance method for maximum power point tracking’, IET Renew. Power Gener., 2012, 6, (4), pp. 259266.
    10. 10)
      • 10. Sawant, R., Chandorkar, M.: ‘A multifunctional four-leg grid-connected compensator’, IEEE Trans. Ind. Appl., 2009, 45, (1), pp. 249259.
    11. 11)
      • 11. Modesto, R., Oliveira da Silva, S., Júnior, A.: ‘Power quality improvement using a dual unified power quality conditioner/uninterruptible power supply in three-phase four-wire systems’, IET Power Electron., 2015, 8, (9), pp. 15951605.
    12. 12)
      • 12. Busada, C., Jorge, S.G., Leon, A.E., et al: ‘Phase-locked loop-less current controller for grid-connected photovoltaic systems’, IET Renew. Power Gener., 2012, 6, (6), pp. 400407.
    13. 13)
      • 13. Gonzalez-Espin, F., Patrao, I., Figueres, E., et al: ‘An adaptive digital control technique for improved performance of grid connected inverters’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 708718.
    14. 14)
      • 14. Singh, M., Chandra, A.: ‘Real-time implementation of ANFIS control for renewable interfacing inverter in 3P4W distribution network’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 121128.
    15. 15)
      • 15. Guo, X.Q., Wu, W.Y.: ‘Improved current regulation of three-phase grid-connected voltage-source inverters for distributed generation systems’, IET Renew. Power Gener., 2010, 4, (2), pp. 101115.
    16. 16)
      • 16. Yao, Z., Xiao, L., Guerrero, J.M.: ‘Improved control strategy for the three-phase grid-connected inverter’, IET Renew. Power Gener., 2015, 9, (6), pp. 587592.
    17. 17)
      • 17. Regalia, P.A.: ‘Stable and efficient lattice algorithms for adaptive IIR filtering’, IEEE Trans. Signal Process., 1992, 40, (2), pp. 375388.
    18. 18)
      • 18. He, Y., Chung, H., Ho, C., et al: ‘Use of boundary control with second-order switching surface to reduce the system order for deadbeat controller in grid-connected inverter’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 26382653.
    19. 19)
      • 19. Yan, Q., Wu, X., Yuan, X., et al: ‘An improved grid-voltage feed-forward strategy for high-power three-phase grid-connected inverters based on the simplified repetitive predictor’, IEEE Trans. Power Electtron., 2016, 31, (5), pp. 38803897.
    20. 20)
      • 20. Su, X., Masoum, M., Wolfs, P.J.: ‘Optimal PV inverter reactive power control and real power curtailment to improve performance of unbalanced four-wire LV distribution networks’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 967977.
    21. 21)
      • 21. IEEE recommended practices and requirements for harmonic control in electrical power systems’, IEEE Std. 519-1992-1993.

Related content

This is a required field
Please enter a valid email address