http://iet.metastore.ingenta.com
1887

Simplified swarm optimisation for the solar cell models parameter estimation problem

Simplified swarm optimisation for the solar cell models parameter estimation problem

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Solar energy applications and research are becoming increasingly popular, and photovoltaics (PVs) are among the most significant solar energy applications. To simulate and optimise PV system performance, the optimal parameters of the solar cell models should be estimated exactly. In this study, improved simplified swarm optimisation (iSSO), a recently introduced soft computing method based on simplified swarm optimisation, is proposed to minimise the least square error between the extracted and the measured data for the solar cell models parameter estimation of the single- and double-diode model problems. Based on the new all-variable difference update mechanism and survival of the fittest policy, the proposed algorithm is able to find an improved approximation for estimating the parameters of single- and double-diode solar cell models. As evidence of the utility of the proposed iSSO, the authors present extensive computational results for two benchmark problems. The comparison of the computational results supports the proposed iSSO algorithm outperforms the previously developed algorithms for all of the experiments in the literature.

References

    1. 1)
      • 1. International Energy Agency, Photovoltaic Power Systems Programme.: ‘2015 snapshot of global photovoltaic markets’. Report IEA PVPS T1-29, 2016.
    2. 2)
      • 2. Ishaque, K., Salam, Z., Mekhilef, S., et al: ‘Parameter extraction of solar photovoltaic modules using penalty-based differential evolution’, Appl. Energy, 2012, 99, pp. 297308.
    3. 3)
      • 3. Ishaque, K., Salam, Z.: ‘An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE)’, Sol. Energy, 2011, 85, (9), pp. 23492359.
    4. 4)
      • 4. Alam, D.F., Yousri, D.A., Eteiba, M.B.: ‘Flower pollination algorithm based solar PV parameter estimation’, Energy Convers. Manage., 2015, 101, pp. 410422.
    5. 5)
      • 5. Mares, O., Paulescu, M., Badescu, V.: ‘A simple but accurate procedure for solving the five-parameter model’, Energy Convers. Manage., 2015, 105, pp. 139148.
    6. 6)
      • 6. Wolf, M., Noel, G.T., Stirn, R.J.: ‘Investigation of the double exponential in the current–voltage characteristics of silicon solar cells’, IEEE Trans. Electron Devices, 1977, 24, (4), pp. 419428.
    7. 7)
      • 7. Kassis, A., Saad, M.: ‘Analysis of multi-crystalline silicon solar cells at low illumination levels using a modified two-diode model’, Sol. Energy Mater. Sol. Cells, 2010, 94, (12), pp. 21082112.
    8. 8)
      • 8. Nishioka, K., Sakitani, N., Uraoka, Y., et al: ‘Analysis of multicrystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration’, Sol. Energy Mater. Sol. Cells, 2007, 91, (13), pp. 12221227.
    9. 9)
      • 9. Askarzadeh, A., Rezazadeh, A.: ‘Parameter identification for solar cell models using harmony search-based algorithms’, Sol. Energy, 2012, 86, (11), pp. 32413249.
    10. 10)
      • 10. Renno, C., Petito, F., Gatto, A.: ‘Artificial neural network models for predicting the solar radiation as input of a concentrating photovoltaic system’, Energy Convers. Manage., 2015, 106, pp. 9991012.
    11. 11)
      • 11. Chin, V.J., Salam, Z., Ishaque, K.: ‘Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review’, Appl. Energy, 2015, 154, pp. 500519.
    12. 12)
      • 12. Chan, D.S.H., Phang, J.C.H.: ‘Analytical methods for the extraction of solar-cell single-and double-diode model parameters from IV characteristics’, IEEE Trans. Electron Devices, 2014, 86, pp. 32413249.
    13. 13)
      • 13. Saleem, H., Karmalkar, S.: ‘An analytical method to extract the physical parameters of a solar cell from four points on the illuminated curve’, IEEE Electron Device Lett., 2009, 30, pp. 349352.
    14. 14)
      • 14. Lun, S., Du, C., Yang, G., et al: ‘An explicit approximate I–V characteristic model of a solar cell based on pad approximants’, Sol. Energy, 2013, 92, pp. 147159.
    15. 15)
      • 15. Jain, A., Kapoor, A.: ‘Exact analytical solutions of the parameters of real solar cells using Lambert W-function’, Sol. Energy Mater. Sol. Cells, 2004, 81, pp. 269277.
    16. 16)
      • 16. Jain, A., Sharma, S., Kapoor, A.: ‘Solar cell array parameters using Lambert W-function’, Sol. Energy Mater. Sol. Cells, 2006, 90, pp. 2531.
    17. 17)
      • 17. Kim, W., Choi, W.: ‘A novel parameter extraction method for the one-diode solar cell model’, Sol. Energy, 2010, 84, (6), pp. 10081019.
    18. 18)
      • 18. Easwarakhanthan, T., Bottin, J., Bouhouch, I., et al: ‘Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers’, Int. J. Sol. Energy , 1986, 4, (1), pp. 112.
    19. 19)
      • 19. Elbaset, A.A., Ali, H., Abd-El Sattar, M.: ‘Novel seven-parameter model for photovoltaic modules’, Sol. Energy Mater. Sol. Cell, 2014, 130, pp. 442455.
    20. 20)
      • 20. Ma, T., Yang, H., Lu, L.: ‘Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays’, Sol. Energy, 2014, 100, pp. 3141.
    21. 21)
      • 21. Tossa, A.K., Soro, Y.M., Azoumah, Y., et al: ‘A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions’, Sol. Energy, 2014, 110, pp. 543560.
    22. 22)
      • 22. Zagrouba, M., Sellami, A., Bouaïcha, M., et al: ‘Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction’, Sol. Energy, 2010, 84, (5), pp. 860866.
    23. 23)
      • 23. Jervase, J.A., Bourdoucen, H., Al-Lawati, A.: ‘Solar cell parameter extraction using genetic algorithms’, Meas. Sci. Technol., 2001, 12, (11), p. 1922.
    24. 24)
      • 24. Ye, M., Wang, X., Xu, Y.: ‘Parameter extraction of solar cells using particle swarm optimization’, J. Appl. Phys., 2009, 105, (9), pp. 094502094508.
    25. 25)
      • 25. Wei, H., Cong, J., Lingyun, X., et al: ‘Extracting solar cell model parameters based on chaos particle swarm algorithm’. Int. Conf. on Electric Information and Control Engineering (ICEICE), 2011, 2011, pp. 398402.
    26. 26)
      • 26. Oliva, D., Cuevas, E., Pajares, G.: ‘Parameter identification of solar cells using artificial bee colony optimization’, Energy, 2014, 72, pp. 93102.
    27. 27)
      • 27. El-Naggar, K.M., AlRashidi, M.R., AlHajri, M.F., et al: ‘Simulated annealing algorithm for photovoltaic parameters identification’, Sol. Energy, 2012, 86, (1), pp. 266274.
    28. 28)
      • 28. AlRashidi, M.R., AlHajri, M.F., El-Naggar, K.M., et al: ‘A new estimation approach for determining the IV characteristics of solar cells’, Sol. Energy, 2011, 85, (7), pp. 15431550.
    29. 29)
      • 29. Ma, J., Ting, T.O., Man, K.L., et al: ‘Parameter estimation of photovoltaic models via cuckoo search’, J. Appl. Math., 2013, 85, pp. 15431550.
    30. 30)
      • 30. Askarzadeh, A., Rezazadeh, A.: ‘Artificial bee swarm optimization algorithm for parameters identification of solar cell models’, Appl. Energy, 2013, 102, pp. 943949.
    31. 31)
      • 31. Yuan, X., Xiang, Y., He, Y.: ‘Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm’, Sol. Energy, 2014, 108, pp. 238251.
    32. 32)
      • 32. http://integrationandcollaboration.org/SSO.html.
    33. 33)
      • 33. Yeh, W.C.: ‘Novel swarm optimization for mining classification rules on thyroid gland data’, Inf. Sci., 2012, 197, pp. 6576.
    34. 34)
      • 34. Yeh, W.C.: ‘Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm optimization’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 2012, 42, (1), pp. 250261.
    35. 35)
      • 35. Yeh, W.C.: ‘Simplified swarm optimization in disassembly sequencing problems with learning effects’, Comput. Oper. Res., 2012, 39, (9), pp. 21682177.
    36. 36)
      • 36. Yeh, W.C.: ‘New parameter-free simplified swarm optimization for artificial neural network training and its application in the prediction of time series’, IEEE Trans. Neural Netw. Learn. Syst., 2013, 24, (4), pp. 661665.
    37. 37)
      • 37. Azizipanah-Abarghooee, R., Niknam, T., Gharibzadeh, M., et al: ‘Robust, fast and optimal solution of practical economic dispatch by a new enhanced gradient-based simplified swarm optimisation algorithm’, IET Gener. Transm. Distrib., 2013, 7, (6), pp. 620635.
    38. 38)
      • 38. Azizipanah-Abarghooee, R.: ‘A new hybrid bacterial foraging and simplified swarm optimization algorithm for practical optimal dynamic load dispatch’, Int. J. Electr. Power Energy Syst., 2013, 49, pp. 414429.
    39. 39)
      • 39. Villalva, M.G., Gazoli, J.R.: ‘Comprehensive approach to modeling and simulation of photovoltaic arrays’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 11981208.
    40. 40)
      • 40. Yeh, W.C.: ‘An improved simplified swarm optimization’, Knowl.-Based Syst., 2015, 82, pp. 6069.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0473
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0473
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address