access icon free Self-adaptive inertia control of DC microgrid based on fast predictive converter regulation

To solve the problem of low inertia in DC microgrid and enable the distributed units to provide adaptive inertia support for the system under disturbance, this study proposes a novel adaptive inertia control strategy for DC microgrid combined with fast predictive converter control. In this strategy, adaptive coordinated inertia control of wind power system, AC power grid and energy storage system of the microgrid is designed according to the characteristics of corresponding micro-sources. Therefore, inertial response of the DC microgrid under disturbance is improved through the regulation of controllable inertia coefficient of each converter. In addition, to avoid control hysteresis and adjustment error, a fast converter local control method based on model predictive approach is proposed to cooperate with the rapid inertia adjustment strategy. To verify the effectiveness of the proposed adaptive inertia control method based on model predictive approach, contrastive simulations are conducted using the proposed control strategy and the traditional control strategy separately based on MATLAB/Simulink. The results show that the proposed control method can effectively improve the transient response to disturbance of the system and guarantee the stability of DC bus voltage as well as the output power quality on AC side of grid-connected converter.

Inspec keywords: adaptive control; distributed power generation; power generation faults; wind power plants; power generation control; power supply quality; predictive control; transient response; power generation reliability; power convertors; power system stability

Other keywords: fast predictive control; Matlab; DC bus voltage stability; system disturbance; contrastive simulation; wind power system; fast converter local control method; grid-connected converter; adaptive inertia control strategy; output power quality; adaptive coordinated inertia control; energy storage system; transient response; AC power grid; wind power DC microgrid; fast predictive converter regulation; rapid inertia adjustment strategy; self-adaptive inertia control; model predictive approach

Subjects: Power convertors and power supplies to apparatus; Distributed power generation; Self-adjusting control systems; Control of electric power systems; Power supply quality and harmonics; Wind power plants; Reliability; Optimal control

References

    1. 1)
      • 5. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    2. 2)
      • 20. Hu, J., Zhu, J., Zhang, Y., et al: ‘Predictive direct virtual torque and power control of doubly fed induction generators for fast and smooth grid synchronization and flexible power regulation’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 31823194.
    3. 3)
      • 2. Chung, I., Liu, W., Cartes, D.A., et al: ‘Control methods of inverter-interfaced distributed generators in a microgrid system’, IEEE Trans. Ind. Appl., 2010, 46, (3), pp. 10781088.
    4. 4)
      • 11. Che, L., Shahidehpour, M.: ‘DC microgrids: Economic operation and enhancement of resilience by hierarchical control’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 25172526.
    5. 5)
      • 16. Serban, I., Marinescu, C.: ‘Control strategy of three-phase battery energy storage systems for frequency support in microgrids and with uninterrupted supply of local loads’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 50105020.
    6. 6)
      • 7. Ahmadi, R., Ferdowsi, M.: ‘Improving the performance of a line regulating converter in a converter-dominated DC microgrid system’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 25532563.
    7. 7)
      • 6. Liu, X., Wang, P., Loh, P.C.: ‘A hybrid AC/DC microgrid and its coordination control’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 278286.
    8. 8)
      • 1. Nejabatkhah, F., Li, Y.W.: ‘Overview of power management strategies of hybrid AC/DC microgrid’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 70727089.
    9. 9)
      • 4. Kakigano, H., Miura, Y., Ise, T.: ‘Low-voltage bipolar-type DC microgrid for super high quality distribution’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 30663075.
    10. 10)
      • 17. Hu, J., Zhu, J., Dorrell, D.G.: ‘Model predictive control of inverters for both islanded and grid-connected operations in renewable power generations’, IET Renew. Power Gener., 2014, 8, (3), pp. 240248.
    11. 11)
      • 22. Zhu, X., Wang, Y., Xu, L., et al: ‘Virtual inertia control of DFIG-based wind turbines for dynamic grid frequency support’. IET Conf. on Renewable Power Generation (RPG 2011), Edinburgh, 2011, pp. 16.
    12. 12)
      • 12. Dragičević, T., Guerrero, J.M., Vasquez, J.C.: ‘A distributed control strategy for coordination of an autonomous LVDC microgrid based on power-line signaling’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 33133326.
    13. 13)
      • 9. Meegahapola, L., Flynn, D.: ‘Impact on transient and frequency stability for a power system at very high wind penetration’. Proc. IEEE Power Eng. Soc. Gen. Meeting, Minnesota, USA, July 2010, pp. 18.
    14. 14)
      • 21. Chen, D., Xu, L., Yao, L.Z.: ‘DC voltage variation based autonomous control of DC microgrids’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 637648.
    15. 15)
      • 14. Azmy, A.M., Erlich, I.: ‘Impact of distributed generation on the stability of electrical power system’. IEEE Power Engineering Society General Meeting, 2005, vol. 2, pp. 10561063.
    16. 16)
      • 18. Geyer, T., Papafotiou, G., Morari, M.: ‘Model predictive direct torque control part I: Concept, algorithm, and analysis’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 18941905.
    17. 17)
      • 8. Katiraei, F., Iravani, M.R., Lehn, P.W.: ‘Micro-grid autonomous operation during and subsequent to islanding process’, IEEE Trans. Power Deliv., 2005, 2, (1), pp. 248257.
    18. 18)
      • 15. Inthamoussou, F.A., Pegueroles-Queralt, J., Bianchi, F.D.: ‘Control of a supercapacitor energy storage system for microgrid applications’, IEEE Trans. Energy Conv., 2013, 28, (3), pp. 690697.
    19. 19)
      • 13. Alaboudy, A.H.K., Zeineldin, H.H., Kirtley, J.L.: ‘Microgrid stability characterization subsequent to fault-triggered islanding incidents’, IEEE Trans. Power Deliv., 2012, 27, (2), pp. 658669.
    20. 20)
      • 3. Eghtedarpour, N., Farjah, E.: ‘Power control and management in a hybrid AC/DC microgrid’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 14941505.
    21. 21)
      • 19. Bouafia, A., Gaubert, J.P., Krim, F.: ‘Predictive direct power control of three-phase pulse width modulation (PWM) rectifier using space-vector modulation (SVM)’, IEEE Trans. Power Electron., 2010, 25, (1), pp. 228236.
    22. 22)
      • 10. Dragičević, T., Guerrero, J.M., Vasquez, J.C., et al: ‘Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 695706.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0463
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0463
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading