Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimal tuning of multivariable disturbance-observer-based control for flicker mitigation using individual pitch control of wind turbine

Multivariable disturbance accommodated observer based control (DOBC) scheme is presented to mitigate loads generated due to wind shear and tower shadow using individual blade pitch for above-rated wind speed condition of wind turbine. Wind shear and tower shadow add flickers as 1p, 3p, 6p and so on, (p is the rotor rotational frequency) for three-bladed wind turbine. Novel DOBC with individual pitch control (IPC) to mitigate the flickers is presented and linear state-space model of wind turbine with tower dynamics is developed. The proposed controller is tuned using optimal control theory to reduce fatigue of drive-train, tower and to regulate output power. The authors have tested the controller on NREL's 5 MW wind turbine, FAST (fatigue, aerodynamics, structures and turbulence) code is used for load modelling and MATLAB/Simulink is used for the simulation. A comparison of power spectral density of generator speed, drive-train torsion and tower fore-aft moment shows better mitigation to the flickers by proposed controller as compared with proportional–integral (PI) and disturbance accommodation control (DAC) with collective pitch control. Furthermore, it shows less degradation in the performance as moving away from the operating point for above-rated wind speed condition of wind turbine. It is concluded that proposed multivariable controller shows better mitigation to turbulent and cyclic aerodynamic loads, provide better regulation to output power using IPC of wind turbine and increased the lifetime of drive-train torsion and tower as compared with PI and DAC.

References

    1. 1)
      • 6. Bossanyi, E.A.: ‘The design of closed loop controllers for wind turbines’, Wind Energy, 2000, 3, (3), pp. 149163.
    2. 2)
      • 31. Bossanyi, E.A.: ‘Individual blade pitch control for load reduction’, Wind Energy, 2003, 6, (2), pp. 119128.
    3. 3)
      • 17. Zhang, Y., Hu, W., Chen, Z., et al: ‘Flicker mitigation strategy for a doubly fed induction generator by torque control’, IET Renew. Power Gener., 2014, 8, (2), pp. 9199.
    4. 4)
      • 4. Dolan, D.S.L., Lehn, P.W.: ‘Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow’, IEEE Trans. Energy Convers., 2006, 21, pp. 717724.
    5. 5)
      • 25. Chen, W.H., Yang, J., Guo, L., et al: ‘Disturbance observer-based control and related methods: an overview’, IEEE Trans. Ind. Electron., 2016, 63, (2).
    6. 6)
      • 19. Imran, R.M., Hussain, D.A., Soltani, M.: ‘DAC to mitigate the effect of periodic disturbances on drive train using collective pitch for variable speed wind turbine’. IEEE Int. Conf. on Industrial Technology (ICIT), 2015, pp. 25882593.
    7. 7)
      • 1. Manwell, J.F., McGowan, J.G., Rogers, A.L.: ‘Wind energy explained: theory, design and application’ (John Wiley Sons, 2010).
    8. 8)
      • 14. Imran, R.M., Hussain, D.A., Soltani, M.: ‘DAC with LQR control design for pitch regulated variable speed wind turbine’. 2014 IEEE 36th Int. Telecommunications Energy Conf. (INTELEC), pp. 16.
    9. 9)
      • 24. Nizam, M., Kamarudin, M.R.S., Rashid, H.A.: ‘Observer-based output feedback control with linear quadratic performance2012.
    10. 10)
      • 23. Alazard, D., Apkarian, P.: ‘Exact observer-based structures for arbitrary compensators’, Int. J. Robust Nonlinear Control, 1999, 9, (2), pp. 101118.
    11. 11)
      • 20. Johansson, K.H., James, B., Bryant, G.F., et al: ‘Multivariable controller tuning’. Proc. of the American Control Conf., 1998, vol. 6, pp. 35143518.
    12. 12)
      • 11. Imran, R.M., Hussain, D.A., Chen, Z.: ‘LQG controller design for pitch regulated variable speed wind turbine’. IEEE Int. Energy Conf. (ENERGYCON), 2014, pp. 101105.
    13. 13)
      • 28. Shirazi, F.A., Grigoriadis, K.M., Viassolo, D.: ‘Wind turbine linear parameter varying control using FAST code’. ASME 2012 5th Annual Dynamic Systems and Control Conf., Fort Lauderdale, Florida, USA, 2012.
    14. 14)
      • 12. Anderson, B.D.O., Moore, J.B.: ‘Optimal control: linear quadratic methods’ (Prentice-Hall, New Jersey, 1989).
    15. 15)
      • 10. Yao, X., Guo, C., Xing, Z., et al: ‘Pitch regulated LQG controller design for variable speed wind turbine’. 2009 Int. Conf. on Mechatronics and Automation, pp. 845849.
    16. 16)
      • 3. Matha, D.: ‘Model development and loads analysis of an offshore wind turbine on a tension leg platform with a comparison to other floating turbine concepts’. April 2009. No. NREL/SR-500-45891. National Renewable Energy Laboratory (NREL), Golden, CO., 2010.
    17. 17)
      • 32. Jonkman, J.M., Buhl, Jr.M.L.: ‘FAST user's guide’, Technical Report, NREL/EL-500-38230, 2005.
    18. 18)
      • 21. Njiri, J.G., Liu, Y., Söffker, D.: ‘Multivariable control of large variable-speed wind turbines for generator power regulation and load reduction’, IFAC-PapersOnLine, 2015, 48, (1), pp. 544549.
    19. 19)
      • 2. Burton, T., Sharpe, D., Jenkins, N., et al: ‘Wind energy handbook’ (John Wiley Sons, 2001).
    20. 20)
      • 15. Burlibasa, A.: ‘Wind speed modeling for large wind turbines: interacting with tower and blades dynamics’. Int. Conf. on System Theory, Control and Computing (ICSTCC), 12–14 October 2012.
    21. 21)
      • 18. Zhang, Y., Chen, Z., Hu, W., et al: ‘Flicker mitigation by individual pitch control of variable speed wind turbines with DFIG’, IEEE Trans. Energy Convers., 2014, 29, (1), pp. 2028.
    22. 22)
      • 29. Pintea, A., Wang, H., Christov, N., et al: ‘Optimal control of variable speed wind turbines’. 19th Mediterranean Conf. on Control Automation (MED), 2011, pp. 838843.
    23. 23)
      • 8. Hand, M.M., Balas, M.J.: ‘Systematic approach for PID controller design for pitch-regulated variable-speed wind turbines’. Proc. ASME Wind Energy Symp., Reno, Nevada, 12–15 January 1998.
    24. 24)
      • 16. De Kooning, J.D., Vandoorn, T.L., Van de Vyver, J., et al: ‘Shaft speed ripples in wind turbines caused by tower shadow and wind shear’, IET Renew. Power Gener., 2014, 8, (2), pp. 195202.
    25. 25)
      • 27. Bianchi, F.D., Battista, H.D., Mantz, R.J.: ‘Wind turbine control systems principles, modelling and gain scheduling design’ (Springer-Verlag, 2007).
    26. 26)
      • 22. Boukhezzar, B., Lupu, L., Siguerdidjane, H., et al: ‘Multivariable control strategy for variable speed, variable pitch wind turbines’, Renew. Energy, 2007, 32, (8), pp. 12731287.
    27. 27)
      • 5. Khalil, H.K., Grizzle, J.W.: ‘Nonlinear systems’ (Prentice-Hall, New Jersey, 1996).
    28. 28)
      • 9. Anjun, X., Hao, X., Shuju, H., et al: ‘Pitch control of large scale wind turbine based on expert PID control’. Int. Conf. on Electronics, Communications and Control (ICECC), 2011, pp. 38363839.
    29. 29)
      • 26. Jonkman, J., Butterfield, S., Musial, W., et al: ‘Definition of a 5-MW reference wind turbine for offshore system development’, Technical Report, NREL/TP-500-38060, 2009.
    30. 30)
      • 30. Zhou, K., Doyle, J.C., Glover, K.: ‘Robust and optimal control’ (Prentice-Hall, New Jersey, 1996), vol. 40.
    31. 31)
      • 33. Kelley, N.D., Jonkman, B.J.: ‘Overview of the TurbSim stochastic inflow turbulence simulator’, Technical Report, NREL/TP-500-41137, 2007.
    32. 32)
      • 7. Bossanyi, E.A.: ‘Wind turbine control for load reduction’, Wind Energy, 2003, 6, (3), pp. 229244.
    33. 33)
      • 13. Wright, A.D.: ‘Modern control design for flexible wind turbines’. PhD thesis, University of Colorado, 2003.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0448
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0448
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address