access icon free Short-circuit current reduction techniques of the doubly-fed induction generator based wind turbines for fault ride through enhancement

Grid voltage disturbances result in high magnitudes of rotor currents and DC-link voltage of the doubly-fed induction generator based wind turbines (DFIG-WTs), which may lead under severe fault conditions into deactivation of the machine side converter (MSC) and violation of the fault ride through (FRT) requirements of the grid codes. In this essence, several solutions were proposed, which vary between installing extra hardware components and control modification. However, the extra costs as well as the control limitations degrade the feasibility of the proposed solutions. In this study, new techniques are proposed to enhance the FRT through peak short-circuit current reduction of the DFIG-WT. The new techniques are developed based on the open-loop and close-loop dynamic response of the DFIG. The new techniques utilise the available MSC voltage, in order not to violate the voltage limits, to increase the rate of change of the DFIG internal transient voltage and to increase the magnitude of the transient impedance. Additionally, the mean variance mapping optimisation is used to optimally tune the gains in the second two techniques. The new techniques were implemented in a manufacturer-based simulation model, and the simulation results show their effectiveness, where the maximum peak current reduction achieved was 23.6%.

Inspec keywords: power generation faults; wind power plants; power convertors; power grids; asynchronous generators; optimisation; dynamic response; wind turbines; rotors; power system transients; short-circuit currents

Other keywords: fault ride through enhancement; machine side converter; rotor current magnitude; DFIG-WTs; mean variance mapping optimisation; DFIG internal transient voltage; grid codes; transient impedance magnitude; short-circuit current reduction techniques; close-loop dynamic response; MSC; manufacturer-based simulation model; doubly-fed induction generator based wind turbines; open-loop dynamic response; FRT; grid voltage disturbances

Subjects: Asynchronous machines; Wind power plants; Optimisation techniques; Power convertors and power supplies to apparatus

References

    1. 1)
      • 20. Feltes, C.: ‘Advanced fault ride-through control of DFIG based wind turbines including grid connection via VSC-HVDC’ (Duisburg-Essen, Duisburg, 2012).
    2. 2)
      • 12. Guo, W., Xiao, L., Dai, S.: ‘Enhancing low-voltage ride-through capability and smoothing output power of DFIG with a superconducting fault-current limiter–magnetic energy storage system’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 277295.
    3. 3)
      • 23. Elnaggar, A.K., Rueda, J.L., Erlich, I.: ‘Comparison of short-circuit current contribution of doubly-fed induction generator based wind turbines and synchronous generator’. IEEE Grenoble PowerTech (POWERTECH), 2013, 2013, pp. 16.
    4. 4)
      • 21. Xie, D., Xu, Z., Yang, L., et al: ‘A comprehensive LVRT control strategy for DFIG wind turbines with enhanced reactive power support’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 33023310.
    5. 5)
      • 17. Yan, X., Venkataramanan, G., Wang, Y., et al: ‘Grid-fault tolerant operation of a DFIG wind turbine generator using a passive resistance network’, IEEE Trans. Power Electron., 2011, 26, (10), pp. 28962905.
    6. 6)
      • 15. Gong, B., Xu, D., Wu, B.: ‘Cost effective method for DFIG fault ride-through during symmetrical voltage dip’. IECON 2010 – 36th Annual Conf. on IEEE Industrial Electronics Society, 2010, pp. 32693274.
    7. 7)
      • 1. ‘Global Wind Energy Outlook 2012 – GWEC’.
    8. 8)
      • 22. El-Naggar, A., Erlich, I.: ‘Fault current contribution analysis of doubly fed induction generator-based wind turbines’, IEEE Trans. Energy Convers., 2015, PP, (99), pp. 19.
    9. 9)
      • 2. Hossain, M.M., Ali, M.H.: ‘Future research directions for the wind turbine generator system’, Renew. Sustain. Energy Rev., 2015, 49, pp. 481489.
    10. 10)
      • 11. Moriconi, F., De La Rosa, F., Singh, A., et al: ‘An innovative compact saturable-core HTS fault current limiter – development, testing and application to transmission class networks’. 2010 IEEE Power and Energy Society General Meeting, 2010, pp. 18.
    11. 11)
      • 19. Liang, J., Howard, D.F., Restrepo, J.A., et al: ‘Feedforward transient compensation control for DFIG wind turbines during both balanced and unbalanced grid disturbances’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 14521463.
    12. 12)
      • 18. Xiang, D., Ran, L., Tavner, P.J., et al: ‘Control of a doubly fed induction generator in a wind turbine during grid fault ride-through’, IEEE Trans. Energy Convers., 2006, 21, (3), pp. 652662.
    13. 13)
      • 6. Morren, J., de Haan, S.W.H.: ‘Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip’, IEEE Trans. Energy Convers., 2005, 20, (2), pp. 435441.
    14. 14)
      • 8. Erlich, I., Wrede, H., Feltes, C.: ‘Dynamic behavior of DFIG-based wind turbines during grid faults’. Power Conversion Conf. – Nagoya, 2007, PCC ‘07, 2007, pp. 11951200.
    15. 15)
      • 5. Justo, J.J., Mwasilu, F., Jung, J.-W.: ‘Doubly-fed induction generator based wind turbines: a comprehensive review of fault ride-through strategies’, Renew. Sustain. Energy Rev., 2015, 45, pp. 447467.
    16. 16)
      • 10. Sarkar, D., Roy, D., Choudhury, A.B., et al: ‘Performance analysis of saturated iron core superconducting fault current limiter using Jiles–Atherton hysteresis model’, J. Magn. Magn. Mater., 2015, 390, pp. 100106.
    17. 17)
      • 16. Wessels, C., Gebhardt, F., Fuchs, F.W.: ‘Fault ride-through of a DFIG wind turbine using a dynamic voltage restorer during symmetrical and asymmetrical grid faults’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 807815.
    18. 18)
      • 24. Erlich, I., Venayagamoorthy, G.K., Worawat, N.: ‘A mean-variance optimization algorithm’. 2010 IEEE Congress on Evolutionary Computation (CEC), 2010, pp. 16.
    19. 19)
      • 14. Yang, J., Fletcher, J.E., O'Reilly, J.: ‘A series-dynamic-resistor-based converter protection scheme for doubly-fed induction generator during various fault conditions’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 422432.
    20. 20)
      • 13. Guo, W., Xiao, L., Dai, S., et al: ‘LVRT capability enhancement of DFIG with switch-type fault current limiter’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 332342.
    21. 21)
      • 4. Hansen, A.D., Michalke, G.: ‘Fault ride-through capability of DFIG wind turbines’, Renew. Energy, 2007, 32, (9), pp. 15941610.
    22. 22)
      • 7. Pannell, G., Atkinson, D.J., Zahawi, B.: ‘Minimum-threshold crowbar for a fault-ride-through grid-code-compliant DFIG wind turbine’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 750759.
    23. 23)
      • 9. Muljadi, E., Gevorgian, V., DeLaRosa, F.: ‘Wind power plant enhancement with a fault current limiter’. 2011 IEEE Power and Energy Society General Meeting, 2011, pp. 17.
    24. 24)
      • 25. Machowski, J., Bialek, J., Bumby, J.: ‘Power system dynamics: stability and control’ (John Wiley & Sons, Chichester, UK, 2008, 2nd. edn.).
    25. 25)
      • 3. VDN: ‘Transmission Code 2007, Netz- und Systemregeln der deutschen Übertragungsnetzbetreiber’, Bd. 1, 1 Bde. 2007.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0372
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0372
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading